Khi nói về thành phần hóa học trong tế bào ý nào sau đây đúng

Các gen bao gồm DNA. Chiều dài của gen quy định độ dài của protein được gen mã hóa. DNA là một chuỗi xoắn kép, trong đó các nucleotide [các bazơ] liên kết với nhau:

  • Adenine [A] liên kết với thymine [T]

  • Guanine [G] liên kết với cytosine [C]

DNA được phiên mã trong quá trình tổng hợp protein, trong đó một sợi ADN được dùng làm khuôn mẫu tổng hợp RNA thông tin [mRNA]. RNA có các base như DNA, ngoại trừ uracil [U] thay thế thymine [T]. mRNA di chuyển từ nhân đến tế bào chất và sau đó đến ribosome, nơi diễn ra quá trình tổng hợp protein. RNA vận chuyển [tRNA] mang các axit amin đến ribosome, và gắn axit amin vào chuỗi polypeptide đang phát triển theo một trình tự xác định bởi mRNA. Khi một chuỗi axit amin được lắp ráp, nó tự gấp nếp cuộn xoắn để tạo ra một cấu trúc protein ba chiều phức tạp dưới ảnh hưởng của các phân tử đi kèm lân cận.

DNA được mã hóa bằng mã bộ ba, chứa 3 trong số 4 nucleotides A, T, G, C. Các axit amin cụ thể được mã hóa bởi các mã bộ ba xác định. Vì có 4 nucleotide, nên số lượng mã bộ ba có thể có là 43 [64]. Tuy nhiên chỉ có 20 axit amin, nên có một số mã bộ ba dư thừa. Bởi vậy, một số mã bộ ba cùng mã hóa một axit amin. Các bộ ba khác có thể mã hóa các yếu tố mở đầu hoặc kết thúc quá trình tổng hợp protein và sắp xếp, lắp ráp các axit amin.

Gen bao gồm exon và intron. Exons mã hóa cho các axit amin cấu thành protein. Còn introns chứa các thông tin chi phối việc kiểm soát và tốc độ sản xuất protein. Exons và intron cùng được sao chép vào mRNA, nhưng các đoạn được sao chép từ intron được loại bỏ sau đó. Nhiều yếu tố điều hòa việc phiên mã, bao gồm RNA antisense, được tổng hợp từ chuỗi DNA không được mã hoá thành mRNA. Ngoài DNA, các nhiễm sắc thể chứa histon và các protein khác cũng ảnh hưởng đến sự biểu hiện gen [protein và số lượng protein được tổng hợp từ một gen nhất định].

Kiểu gen cho biết thành phần và trình tự di truyền cụ thể; nó quy định những protein nào được mã hóa để sản xuất.

Ngược lại, bộ gen nói đến toàn bộ thành phần tất cả của các nhiễm sắc thể đơn bội, bao gồm các gen mà chúng chứa.

Kiểu hình hướng tới biểu hiện cơ thể, sinh hóa và sinh lý của một người - nghĩa là, làm thế nào các tế bào [hay cơ thể] thực hiện chức năng. Kiểu hình được xác định bởi loại và số lượng protein tổng hợp, tức là, sự biểu hiện của các gen ra môi trường như thế nào. Kiểu gen cụ thể có thể có hoặc không tương quan tốt với kiểu hình.

Biểu hiện đề cập đến quá trình điều hòa thông tin được mã hoá trong một gen được dịch mã từ một phân tử [thường là protein hoặc RNA]. Sự biểu hiện gen phụ thuộc vào nhiều yếu tố như tính trạng đó trội hay lặn, mức ngoại hiện và biểu hiện của gen [xem Các yếu tố ảnh hưởng đến sự biểu hiện gen Các yếu tố ảnh hưởng đến sự biểu hiện gen ], mức độ phân hóa mô [xác định theo loại mô và tuổi], các yếu tố môi trường, giới tính hoặc sự bất hoạt của nhiễm sắc thể và các yếu tố khác chưa biết.

Các yếu tố ảnh hưởng đến biểu hiện gen mà không thay đổi trình tự bộ gen được gọi là các yếu tố biểu sinh.

Sự hiểu biết về nhiều cơ chế sinh hóa điều chỉnh sự biểu hiện gen ngày càng rõ ràng. Một cơ chế là sự thay đổi việc nối exon [còn gọi là quá trình trưởng thành mRNA]. Trong phân tử mRNA mới được tổng hợp, các intron được loại bỏ, từng đoạn exon được tách ra riêng biệt, và sau đó các exon lắp ráp theo nhiều trật tự khác nhau, dẫn đến nhiều loại mRNA khác nhau và có khả năng dịch mã ra nhiều protein từ cùng chung một mã gen ban đầu. Số lượng protein được tổng hợp trong cơ thể con người có thể lên đến > 100.000 mặc dù hệ gen của con người chỉ có khoảng 20.000 gen.

Các cơ chế trung gian biểu hiện gen khác bao gồm các phản ứng methyl hóa DNA và phản ứng của histone như methyl hóa và acetyl hóa. DNA methyl hóa có xu hướng làm bất hoạt một gen. Chuỗi DNA cuộn xoắn quanh quả cầu histone. Sự methyl hóa histone có thể làm tăng hoặc giảm số lượng protein được tổng hợp từ một gen cụ thể. Sự acetyl hóa histone liên quan đến việc giảm biểu hiện gen ra bên ngoài. Sợi DNA không được phiên mã để hình thành mRNA cũng có thể được sử dụng như một khuôn mẫu để tổng hợp RNA, kiểm soát quá trình phiên mã của sợi đối diện.

Một cơ chế quan trọng khác liên quan đến microRNAs [miRNAs]. MiRNA ngắn, hình dạng như chiếc kẹp tóc [các trình tự RNA khi liên kết với nhau] RNA này ức chế sự biểu hiện gen sau khi phiên mã. MiRNA có thể tham gia vào việc điều chỉnh đến 60% protein đã phiên mã.

Các tế bào T phát triển từ các tế bào gốc tủy xương di chuyển đến tuyến ức, nơi chúng trải qua sự chọn lọc khắt khe. Có 3 loại tế bào T chính:

Trong quá trình chọn lọc, các tế bào T phản ứng với tự kháng nguyên được trình diện bởi các phân tử MHC nội sinh hoặc chính các phân tử MHC [bất kể có kháng nguyên hay không] thì được loại bỏ bởi quá trình chết theo chu trình, hạn chế khả năng tự miễn dịch. Chỉ có các tế bào T mà có thể nhận ra phức hợp kháng nguyên ngoại lai cho phân tử MHC của cơ thể mới tồn tại; chúng rời tuyến ức vào máu ngoại vi và mô lymphoid.

Hầu hết các tế bào T trưởng thành biểu hiện CD4 hoặc CD8 và có một vùng gắn kháng nguyên, thụ thể bề mặt Ig-like gọi là thụ thể tế bào T [TCR]. Có 2 loại TCR:

  • Alpha-beta TCR: Bao gồm các chuỗi TCR alpha và beta; hiện diện trên hầu hết các tế bào T

  • Gamma-delta TCR: Bao gồm chuỗi TCR gamma và delta; hiện diện trên một số lượng nhỏ các tế bào T

Các gen mã hoá TCR, giống như gen Ig, được sắp xếp lại, dẫn đến việc xác định tính đặc hiệu và ái lực với kháng nguyên. Hầu hết các tế bào T [những người có alpha-beta TCR] nhận ra peptide có nguồn gốc kháng nguyên biểu hiện ở phân tử MHC của tế bào trình diện kháng nguyên. Các tế bào T Gamma-delta nhận ra protein kháng nguyên trực tiếp hoặc nhận ra lipid antigen được biểu hiện bởi một phân tử giống MHC gọi là CD1. Đối với các tế bào B, số lượng tế bào T đặc hiệu là gần như vô hạn.

Để các tế bào T alpha-beta được kích hoạt, TCR phải kết nối với kháng nguyên-MHC [xem hình Mô hình hai tín hiệu để kích hoạt tế bào T Mô hình hai tín hiệu cho kích hoạt tế bào T. ] . Các phân tử bổ sung đồng kích hoạt cũng phải tương tác [ví dụ, CD28 trên tế bào T tương tác với CD80 và CD86 trên tế bào trình diện kháng nguyên]; nếu không, tế bào T trở nên trơ hoặc chết theo chương trình. Một số phân tử phụ [ví dụ, CTLA-4 [kháng nguyên tế bào lympho T gây độc 4] trên tế bào T, cũng tương tác với CD80 và CD86 trên tế bào chết, tương tác với PD-L1 [ligand protein death cell 1] trên tế bào trình diện kháng nguyên] ức chế các tế bào T hoạt hóa trước đó và do đó làm giảm đáp ứng miễn dịch. Các phân tử như CTLA-4 và PD-1, và các phối tử của chúng, được gọi là các phân tử checkpoint bởi vì chúng báo hiệu rằng tế bào T cần được kiềm chế để tiếp tục hoạt động. Các tế bào ung thư biểu hiện các phân tử điểm kiểm tra có thể được bảo vệ khỏi hệ thống miễn dịch bằng cách hạn chế hoạt động của các tế bào T đặc hiệu của khối u.

Các kháng thể đơn dòng nhắm vào các phân tử điểm kiểm tra trên các tế bào T hoặc trên các tế bào khối u [gọi là các chất ức chế điểm kiểm tra, xem bảng Một số tác nhân miễn dịch trong sử dụng lâm sàng Một số tác nhân điều trị miễn dịch trong sử dụng lâm sàng

] được sử dụng để ngăn chặn sự điều chỉnh giảm đáp ứng của khối u và điều trị hiệu quả một số bệnh ung thư kháng thuốc. Tuy nhiên, vì các phân tử checkpoint cũng có liên quan đến các phản ứng miễn dịch khác, các chất ức chế checkpoint có thể gây ra phản ứng viêm và tự miễn dịch nghiêm trọng [cả hệ thống và cơ quan].

Các chuỗi alpha [α] và beta [β] của thụ thể tế bào T [TCR] liên kết với kháng nguyên [Ag] -phức hợp hòa hợp mô [MHC] trên một tế bào trình diện kháng nguyên [APC], và CD4 hoặc CD8 tương tác với MHC. Cả hai hành động kích thích tế bào T [tín hiệu đầu tiên] thông qua các chuỗi phụ CD3. Tuy nhiên, nếu không có tín hiệu thứ hai [đồng kích hoạt], tế bào T sẽ trơ hoặc dung nạp.

TCR có cấu trúc tương đồng với thụ thể tế bào B; các chuỗi αβ [hoặc là gamma [γ] và delta [δ]] có các vùng hằng định [C] và biến đổi [V]. [1] = tín hiệu thứ nhất; [2] = tín hiệu thứ 2.

Tế bào T hỗ trợ [Th] thường là CD4 nhưng có thể là CD8. Chúng biệt hóa từ Th0 thành một trong những tế bào sau đây:

  • Th1: Nói chung, tế bào Th1 tăng cường miễn dịch qua trung gian tế bào thông qua các tế bào T và các đại thực bào gây độc tế bào và do đó đặc biệt liên quan đến việc phòng chống các tác nhân gây bệnh trong tế bào [ví dụ, virus]. Chúng cũng có thể thúc đẩy sản xuất một số lớp kháng thể.

  • Th2: Th2 tế bào đặc biệt chuyên nghiệp trong việc thúc đẩy sản xuất kháng thể bởi các tế bào B [miễn dịch dịch thể] và do đó đặc biệt liên quan đến các đáp ứng trực tiếp nhắm vào dị nguyên gây bệnh ngoài tế bào [ví dụ vi khuẩn, ký sinh trùng].

  • Th17: Tế bàoTh17 thúc đẩy viêm mô.

Tế bào T điều hòa [ức chế] trung gian ngăn chặn phản ứng miễn dịch và thường biểu hiện yếu tố phiên mã Foxp3. Chúng bao gồm các tập hợp con của các tế bào T CD4 hoặc CD8 phát triển trong tuyến ức [Treg tự nhiên] hoặc từ các tế bào T thông thường khi gặp kháng nguyên ở ngoại vi [Treg gây ra]. Các tế bào T điều hòa tiết ra các cytokine như chuyển đổi yếu tố tăng trưởng [TGF] -beta và interleukin [IL] -10 với các đặc tính ức chế miễn dịch hoặc ức chế đáp ứng miễn dịch với các cơ chế tế bào như CTLA- 4 và CD25. Bệnh nhân có đột biến chức năng trong Foxp3 phát triển hội chứng rối loạn tự miễn dịch IPEX Hội chứng IPEX [điều hòa miễn dịch, hội chứng đa tuyến nội tiết, bệnh đường ruột, hội chứng liên kết X].

Tế bào T [Tc] gây độc thường là CD8 nhưng có thể là CD4; chúng rất quan trọng để loại bỏ các mầm bệnh trong tế bào, đặc biệt là vi rút. Tế bào Tc đóng một vai trò trong việc thải ghép cơ quan.

Tế bào Tc phát triển bao gồm 3 giai đoạn:

  • Một tế bào tiền thân, khi được kích thích thích hợp, có thể biệt hóa thành một tế bào Tc

  • Một tế bào phản ứng đã biệt hóa và có thể tiêu diệt mục tiêu thích hợp của nó

  • Một tế bào nhớ không hoạt động [không còn được kích thích] nhưng sẽ sẵn sàng để trở thành một tế bào phản ứng khi được tái kích thích bởi sự kết hợp kháng nguyên -MHC ban đầu

Tế bào TC được kích hoạt đầy đủ, như tế bào diệt tự nhiên, có thể giết chết một tế bào đích bị nhiễm bệnh bằng cách gây ra sự chết theo chu trình.

Tế bào Tc có thể tiết ra cytokines và như tế bào Th sẽ được chia thành các loại Tc1 và Tc2 dựa trên dấu ấn sản xuất cytokine của chúng.

  • Đồng ghép: Được tạo ra để đáp ứng với các tế bào tự thân [autologous] được biến đổi bởi nhiễm virus hoặc các protein ngoại lai khác

  • Dị sinh: Được tạo ra để đáp ứng với các tế bào biểu hiện các sản phẩm MHC ngoại lai [ví dụ, trong ghép tạng khi các phân tử MHC của người hiến tặng khác với người nhận]

Một số tế bào Tc có thể trực tiếp nhận ra MHC ngoại sinh [con đường trực tiếp]; những tế bào khác có thể nhận ra các mẩu MHC ngoại sinh được trình diện bởi các phân tử MHC tự thân của người nhận ghép tạng [con đường gián tiếp].

Video liên quan

Chủ Đề