Lỗi cf file is changed w 2007 l 318 năm 2024

1. Koga Y. Study report on the constituents of squeezed watermelon. Tokyo Kagaku Kaishi J. Tokyo Chem. Soc. 1914;35:519–528. [Google Scholar]

2. Fearon W.R. The carbamido diacetyl reaction: A test for citrulline. Biochem. J. 1939;33:902–907. doi: 10.1042/bj0330902. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Rogers G.E., Harding H.W., Llewellyn-Smith I.J. The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim. et Biophys. Acta (BBA) Protein Struct. 1977;495:159–175. doi: 10.1016/0005-2795(77)90250-1. [PubMed] [CrossRef] [Google Scholar]

4. Vossenaar E.R., Zendman A.J., van Venrooij W.J., Pruijn G.J. PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. BioEssays. 2003;25:1106–1118. doi: 10.1002/bies.10357. [PubMed] [CrossRef] [Google Scholar]

5. Papadia C., Osowska S., Cynober L., Forbes A. Citrulline in health and disease. Review on human studies. Clin. Nutr. 2018;37:1823–1828. doi: 10.1016/j.clnu.2017.10.009. [PubMed] [CrossRef] [Google Scholar]

6. Bouillanne O., Melchior J.-C., Faure C., Paul M., Canoui-Poitrine F., Boirie Y., Chevenne D., Forasassi C., Guery E., Herbaud S., et al. Impact of 3-week citrulline supplementation on postprandial protein metabolism in malnourished older patients: The Ciproage randomized controlled trial. Clin. Nutr. 2018;38:564–574. doi: 10.1016/j.clnu.2018.02.017. [PubMed] [CrossRef] [Google Scholar]

7. Suzuki T., Morita M., Kobayashi Y., Kamimura A. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. J. Int. Soc. Sports Nutr. 2016;13:6. doi: 10.1186/s12970-016-0117-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Crenn P., Vahedi K., Lavergne-Slove A., Cynober L., Matuchansky C., Messing B. Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterol. 2003;124:1210–1219. doi: 10.1016/S0016-5085(03)00170-7. [PubMed] [CrossRef] [Google Scholar]

9. Curis E., Crenn P., Cynober L. Citrulline and the gut. Curr. Opin. Clin. Nutr. Metab. Care. 2007;10:620–626. doi: 10.1097/MCO.0b013e32829fb38d. [PubMed] [CrossRef] [Google Scholar]

10. Windmueller G.H., Spaeth A.E. Source and fate of circulating citrulline. Am. J. Physiol. -Endocrinol. Metab. 1981;241:E473–E480. doi: 10.1152/ajpendo.1981.241.6.E473. [PubMed] [CrossRef] [Google Scholar]

11. Lau T., Owen W., Yu Y.M., Noviski N., Lyons J., Zurakowski D., Tsay R., Ajami A., Young V.R., Castillo L. Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. J. Clin. Investig. 2000;105:1217–1225. doi: 10.1172/JCI7199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Rimando M.A., Perkins-Veazie P.M. Determination of citrulline in watermelon rind. J. Chromatogr. A. 2005;1078:196–200. doi: 10.1016/j.chroma.2005.05.009. [PubMed] [CrossRef] [Google Scholar]

13. Trexler E.T., Persky A., Ryan E.D., Schwartz T., Stoner L., Smith-Ryan A.E. Acute Effects of Citrulline Supplementation on High-Intensity Strength and Power Performance: A Systematic Review and Meta-Analysis. Sports Med. 2019;49:707–718. doi: 10.1007/s40279-019-01091-z. [PubMed] [CrossRef] [Google Scholar]

14. Mirenayat M.S., Moradi S., Mohammadi H., Rouhani M.H. Effect of L-Citrulline Supplementation on Blood Pressure: A Systematic Review and Meta-Analysis of Clinical Trials. Curr. Hypertens. Rep. 2018;20:98. doi: 10.1007/s11906-018-0898-3. [PubMed] [CrossRef] [Google Scholar]

15. Wu G. Intestinal Mucosal Amino Acid Catabolism. J. Nutr. 1998;128:1249–1252. doi: 10.1093/jn/128.8.1249. [PubMed] [CrossRef] [Google Scholar]

16. Fujita T., Yanaga K. Association between glutamine extraction and release of citrulline and glycine by the human small intestine. Life Sci. 2007;80:1846–1850. doi: 10.1016/j.lfs.2007.02.017. [PubMed] [CrossRef] [Google Scholar]

17. van de Poll M., Ligthart-Melis G.C., Boelens P.G., Deutz N., Van Leeuwen P.A.M., DeJong C.H.C. Intestinal and hepatic metabolism of glutamine and citrulline in humans. J. Physiol. 2007;581:819–827. doi: 10.1113/jphysiol.2006.126029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Marini J.C., Keller B., Didelija I.C., Castillo L., Lee B. Enteral arginase II provides ornithine for citrulline synthesis. Am. J. Physiol. Metab. 2011;300:E188–E194. doi: 10.1152/ajpendo.00413.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Buijs N., Brinkmann S.J., Oosterink J.E., Luttikhold J., Schierbeek H., Wisselink W., Beishuizen A., van Goudoever J., Houdijk A.P., Van Leeuwen P.A., et al. Intravenous glutamine supplementation enhances renal de novo arginine synthesis in humans: A stable isotope study. Am. J. Clin. Nutr. 2014;100:1385–1391. doi: 10.3945/ajcn.113.081547. [PubMed] [CrossRef] [Google Scholar]

20. Tomlinson C., Rafii M., Ball R.O., Pencharz P.B. Arginine Can Be Synthesized from Enteral Proline in Healthy Adult Humans. J. Nutr. 2011;141:1432–1436. doi: 10.3945/jn.110.137224. [PubMed] [CrossRef] [Google Scholar]

21. Curis E., Nicolis I., Moinard C., Osowska S., Zerrouk N., Bénazeth S., Cynober L. Almost all about citrulline in mammals. Amino Acids. 2005;29:177–205. doi: 10.1007/s00726-005-0235-4. [PubMed] [CrossRef] [Google Scholar]

22. Rougé C., Robert C.D., Robins A., LE Bacquer O., Volteau C., De La Cochetière M.-F., Darmaun D. Manipulation of citrulline availability in humans. Am. J. Physiol. Liver Physiol. 2007;293:G1061–G1067. doi: 10.1152/ajpgi.00289.2007. [PubMed] [CrossRef] [Google Scholar]

23. Marini J.C., Didelija I.C., Castillo L., Lee B. Glutamine: Precursor or nitrogen donor for citrulline synthesis? Am. J. Physiol. Metab. 2010;299:E69–E79. doi: 10.1152/ajpendo.00080.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Marini J.C., Didelija I.C., Castillo L., Lee B. Plasma Arginine and Ornithine Are the Main Citrulline Precursors in Mice Infused with Arginine-Free Diets. J. Nutr. 2010;140:1432–1437. doi: 10.3945/jn.110.125377. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Marini J.C., Agarwal U., Didelija I.C., Azamian M., Stoll B., Nagamani S.C. Plasma Glutamine Is a Minor Precursor for the Synthesis of Citrulline: A Multispecies Study. J. Nutr. 2017;147:549–555. doi: 10.3945/jn.116.243592. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Ligthart-Melis C.G., Deutz N.E.P. Is glutamine still an important precursor of citrulline? Am. J. Physiol.Endocrinol. Metab. 2011;301:E264–E266. doi: 10.1152/ajpendo.00223.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Haines R.J., Pendleton L.C., Eichler D.C. Argininosuccinate synthase: At the center of arginine metabolism. Int. J. Biochem. Mol. Boil. 2010;2:8–23. [PMC free article] [PubMed] [Google Scholar]

28. Maric S., Flüchter P., Guglielmetti L.C., Staerkle R.F., Sasse T., Restin T., Schneider C., Holland-Cunz S.G., Crenn P., Vuille-Dit-Bille R.N. Plasma citrulline correlates with basolateral amino acid transporter LAT4 expression in human small intestine. Clin. Nutr. 2020;40:2244–2251. doi: 10.1016/j.clnu.2020.10.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Castillo L., Sánchez M., Vogt J., Chapman T.E., Derojas-Walker T.C., Tannenbaum S.R., Ajami A.M., Young V.R. Plasma arginine, citrulline, and ornithine kinetics in adults, with observations on nitric oxide synthesis. Am. J. Physiol. Content. 1995;268:E360–E367. [PubMed] [Google Scholar]

30. Nakakariya M., Shima Y., Shirasaka Y., Mitsuoka K., Nakanishi T., Tamai I. Organic anion transporter OAT1 is involved in renal handling of citrulline. Am. J. Physiol. Physiol. 2009;297:F71–F79. doi: 10.1152/ajprenal.90662.2008. [PubMed] [CrossRef] [Google Scholar]

31. Mitsuoka K., Shirasaka Y., Fukushi A., Sato M., Nakamura T., Nakanishi T., Tamai I. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells. Biopharm. Drug Dispos. 2009;30:126–137. doi: 10.1002/bdd.653. [PubMed] [CrossRef] [Google Scholar]

32. Verrey F., Singer D., Ramadan T., Vuille-Dit-Bille R., Mariotta L., Camargo S. Kidney amino acid transport. Pflügers Arch. J. Physiol. 2009;458:53–60. doi: 10.1007/s00424-009-0638-2. [PubMed] [CrossRef] [Google Scholar]

33. Dhanakoti S.N., Brosnan J.T., Herzberg G.R., Brosnan M.E. Renal arginine synthesis: Studies in vitro and in vivo. Am. J. Physiol. Metab. 1990;259:E437–E442. doi: 10.1152/ajpendo.1990.259.3.E437. [PubMed] [CrossRef] [Google Scholar]

34. Moinard C., Nicolis I., Neveux N., Darquy S., Bénazeth S., Cynober L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: The Citrudose pharmacokinetic study. Br. J. Nutr. 2007;99:855–862. doi: 10.1017/S0007114507841110. [PubMed] [CrossRef] [Google Scholar]

35. Morris J.S. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 2002;22:87–105. doi: 10.1146/annurev.nutr.22.110801.140547. [PubMed] [CrossRef] [Google Scholar]

36. Cynober L., Le Boucher J., Vasson M.-P. Arginine metabolism in mammals. J. Nutr. Biochem. 1995;6:402–413. doi: 10.1016/0955-2863(95)00066-9. [CrossRef] [Google Scholar]

37. Bourdon A., Rougé C., Legrand A., Robert C.D., Piloquet H., Vodovar M., Voyer M., Rozé J.-C., Darmaun D. Urinary citrulline in very low birth weight preterm infants receiving intravenous nutrition. Br. J. Nutr. 2011;108:1150–1154. doi: 10.1017/S0007114511006660. [PubMed] [CrossRef] [Google Scholar]

38. Osowska S., Moinard C., Loï C., Neveux N., Cynober L. Citrulline increases arginine pools and restores nitrogen balance after massive intestinal resection. Gut. 2004;53:1781–1786. doi: 10.1136/gut.2004.042317. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Jourdan M., Nair K.S., Carter R.E., Schimke J., Ford G.C., Marc J., Aussel C., Cynober L. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet—A pilot study. Clin. Nutr. 2014;34:449–456. doi: 10.1016/j.clnu.2014.04.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Ventura G., Moinard C., Sinico F., Carrière V., Lasserre V., Cynober L., De Bandt J.P. Evidence for a role of the ileum in the control of nitrogen homeostasis via the regulation of arginine metabolism. Br. J. Nutr. 2011;106:227–236. doi: 10.1017/S0007114511000079. [PubMed] [CrossRef] [Google Scholar]

41. Castillo L., Chapman T.E., Sanchez M., Yu Y.M., Burke J.F., Ajami A.M., Vogt J., Young V.R. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc. Natl. Acad. Sci. USA. 1993;90:7749–7753. doi: 10.1073/pnas.90.16.7749. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Jonker R., Deutz N.E., Erbland M.L., Anderson P.J., Engelen M.P. Alterations in whole-body arginine metabolism in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2016;103:1458–1464. doi: 10.3945/ajcn.115.125187. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Marini J.C., Agarwal U., Robinson J.L., Yuan Y., Didelija I.C., Stoll B., Burrin D. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig. Am. J. Physiol. Metab. 2017;313:E233–E242. doi: 10.1152/ajpendo.00055.2017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Ioannou H., Avgoustides-Savvopoulou P., Diamanti E., Tsampoura Z., Drosou-Agakidou V. Age-related serial plasma citrulline levels in preterm neonates. Pediatrics. 2008;121:S137–S138. doi: 10.1542/peds.2007-2022GGGGG. [CrossRef] [Google Scholar]

45. Crenn P., Hanachi M., Neveux N., Cynober L. Circulating citrulline levels: A biomarker for intestinal functionality assessment. Ann. Biol. Clin. 2011;69:513–521. doi: 10.1684/abc.2011.0609. [PubMed] [CrossRef] [Google Scholar]

46. Crenn P., Messing B., Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008;27:328–339. doi: 10.1016/j.clnu.2008.02.005. [PubMed] [CrossRef] [Google Scholar]

47. Ratner S., Petrack B. Biosynthesis of urea. III. Further studies on arginine synthesis from citrulline. J. Biol. Chem. 1951;191:693–705. doi: 10.1016/S0021-9258(18)55974-3. [PubMed] [CrossRef] [Google Scholar]

49. Allan J., Cusworth D., Dent C., Wilson V. A disease, probably hereditary, characterised by severe mental deficiency and a constant gross abnormality of aminoacid metabolism. Lancet. 1958;271:182–187. doi: 10.1016/S0140-6736(58)90666-4. [PubMed] [CrossRef] [Google Scholar]

50. Chen G.-F., Baylis C. In vivo renal arginine release is impaired throughout development of chronic kidney disease. Am. J. Physiol. Physiol. 2010;298:F95–F102. doi: 10.1152/ajprenal.00487.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Saheki T., Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD) J. Hum. Genet. 2002;47:333–341. doi: 10.1007/s100380200046. [PubMed] [CrossRef] [Google Scholar]

52. Booth C., Dowling R.H. Functional compensation after small-bowel resection in man: Demonstration by Direct Measurement. Lancet. 1966;288:146–147. doi: 10.1016/S0140-6736(66)92426-3. [PubMed] [CrossRef] [Google Scholar]

53. Mifsud F., Czernichow S., Carette C., Levy R., Ravaud P., Cynober L., Neveux N., Rives-Lange C., Eustache F., Coupaye M., et al. Behaviour of plasma citrulline after bariatric surgery in the BARIASPERM cohort. Clin. Nutr. 2020;40:505–510. doi: 10.1016/j.clnu.2020.05.045. [PubMed] [CrossRef] [Google Scholar]

54. Seidner D.L., Joly F., Youssef N.N. Effect of Teduglutide, a Glucagon-like Peptide 2 Analog, on Citrulline Levels in Patients With Short Bowel Syndrome in Two Phase III Randomized Trials. Clin. Transl. Gastroenterol. 2015;6:e93. doi: 10.1038/ctg.2015.15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Jeppesen P.B., Pertkiewicz M., Messing B., Iyer K., Seidner D.L., O’Keefe S., Forbes A., Heinze H., Joelsson B. Teduglutide Reduces Need for Parenteral Support Among Patients with Short Bowel Syndrome with Intestinal Failure. Gastroenterology. 2012;143:1473–1481.e3. doi: 10.1053/j.gastro.2012.09.007. [PubMed] [CrossRef] [Google Scholar]

56. Funghini S., Thusberg J., Spada M., Gasperini S., Parini R., Ventura L., Meli C., De Cosmo L., Sibilio M., Mooney S., et al. Carbamoyl Phosphate Synthetase 1 deficiency in Italy: Clinical and genetic findings in a heterogeneous cohort. Gene. 2011;493:228–234. doi: 10.1016/j.gene.2011.11.052. [PubMed] [CrossRef] [Google Scholar]

57. Tuchman M., Tsai M.Y., Holzknecht R.A., Brusilow S.W. Carbamyl Phosphate Synthetase and Ornithine Transcarbamylase Activities in Enzyme-Deficient Human Liver Measured by Radiochromatography and Correlated with Outcome. Pediatr. Res. 1989;26:77–82. doi: 10.1203/00006450-198907000-00021. [PubMed] [CrossRef] [Google Scholar]

58. Robinson J.L., Smith V., Stoll B., Agarwal U., Premkumar M.H., Lau P., Cruz S.M., Manjarin R., Olutoye O., Burrin D., et al. Prematurity reduces citrulline-arginine-nitric oxide production and precedes the onset of necrotizing enterocolitis in piglets. Am. J. Physiol. Liver Physiol. 2018;315:G638–G649. doi: 10.1152/ajpgi.00198.2018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Van Der Velden W.J.F.M., Herbers A.H.E., Brüggemann R.J.M., Feuth T., Donnelly J.P., Blijlevens N.M.A. Citrulline and albumin as biomarkers for gastrointestinal mucositis in recipients of hematopoietic SCT. Bone Marrow Transplant. 2013;48:977–981. doi: 10.1038/bmt.2012.278. [PubMed] [CrossRef] [Google Scholar]

60. Lutgens L., Lambin P. Biomarkers for radiation-induced small bowel epithelial damage: An emerging role for plasma Citrulline. World J. Gastroenterol. 2007;13:3033–3042. doi: 10.3748/wjg.v13.i22.3033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Fitzgibbons S., Ching Y.A., Valim C., Zhou J., Iglesias J., Duggan C., Jaksic T. Relationship between serum citrulline levels and progression to parenteral nutrition independence in children with short bowel syndrome. J. Pediatr. Surg. 2009;44:928–932. doi: 10.1016/j.jpedsurg.2009.01.034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Pappas P.A., Tzakis A.G., Gaynor J.J., Carreno M.R., Ruiz P., Huijing F., Kleiner G., Rabier D., Kato T., Levi D.M., et al. An Analysis of the Association between Serum Citrulline and Acute Rejection among 26 Recipients of Intestinal Transplant. Arab. Archaeol. Epigr. 2004;4:1124–1132. doi: 10.1111/j.1600-6143.2004.00469.x. [PubMed] [CrossRef] [Google Scholar]

63. Piton G., Manzon C., Monnet E., Cypriani B., Barbot O., Navellou J.-C., Carbonnel F., Capellier G. Plasma citrulline kinetics and prognostic value in critically ill patients. Intensiv. Care Med. 2010;36:702–706. doi: 10.1007/s00134-010-1751-6. [PubMed] [CrossRef] [Google Scholar]

64. Batra A., Keys S.C., Johnson M., Wheeler R.A., Beattie R.M. Epidemiology, management and outcome of ultrashort bowel syndrome in infancy. Arch. Dis. Child. Fetal Neonatal Ed. 2017;102:F551–F556. doi: 10.1136/archdischild-2016-311765. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Pironi L. Definitions of intestinal failure and the short bowel syndrome. Best Pr. Res. Clin. Gastroenterol. 2016;30:173–185. doi: 10.1016/j.bpg.2016.02.011. [PubMed] [CrossRef] [Google Scholar]

66. Pironi L., Goulet O., Buchman A., Messing B., Gabe S., Candusso M., Bond G., Gupte G., Pertkiewicz M., Steiger E., et al. Outcome on home parenteral nutrition for benign intestinal failure: A review of the literature and benchmarking with the European prospective survey of ESPEN. Clin. Nutr. 2012;31:831–845. doi: 10.1016/j.clnu.2012.05.004. [PubMed] [CrossRef] [Google Scholar]

67. Choudhury R.A., Yoeli D., Hoeltzel G., Moore H.B., Prins K., Kovler M., Goldstein S., Holland-Cunz S.G., Adams M., Roach J., et al. STEP improves long-term survival for pediatric short bowel syndrome patients: A Markov decision analysis. J. Pediatr. Surg. 2020;55:1802–1808. doi: 10.1016/j.jpedsurg.2020.03.017. [PubMed] [CrossRef] [Google Scholar]

68. Dewberry L.C., Hilton S.A., Vuille-dit-Bille R.N., Liechty K.W. Is Tapering Enteroplasty an Alternative to Resection of Dilated Bowel in Small Intestinal Atresia? J. Surg. Res. 2020;246:1–5. doi: 10.1016/j.jss.2019.08.014. [PubMed] [CrossRef] [Google Scholar]

70. Vantini I., Benini L., Bonfante F., Talamini G., Sembenini C., Chiarioni G., Maragnolli O., Benini F., Capra F. Survival rate and prognostic factors in patients with intestinal failure. Dig. Liver Dis. 2004;36:46–55. doi: 10.1016/j.dld.2003.09.015. [PubMed] [CrossRef] [Google Scholar]

71. Messing B., Crenn P., Beau P., Boutron-Ruault M.C., Rambaud J.-C., Matuchansky C. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology. 1999;117:1043–1050. doi: 10.1016/S0016-5085(99)70388-4. [PubMed] [CrossRef] [Google Scholar]

72. Celik I.H., Demirel G., Canpolat F.E., Dilmen U. Reduced Plasma Citrulline Levels in Low Birth Weight Infants With Necrotizing Enterocolitis. J. Clin. Lab. Anal. 2013;27:328–332. doi: 10.1002/jcla.21607. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Crenn P., Coudray–Lucas C., Thuillier F., Cynober L., Messing B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000;119:1496–1505. doi: 10.1053/gast.2000.20227. [PubMed] [CrossRef] [Google Scholar]

74. Diamanti A., Panetta F., Gandullia P., Morini F., Noto C., Torre G., Lezo A., Goffredo B., Daniele A., Gambarara M. Plasma citrulline as marker of bowel adaptation in children with short bowel syndrome. Langenbeck’s Arch. Surg. 2011;396:1041–1046. doi: 10.1007/s00423-011-0813-8. [PubMed] [CrossRef] [Google Scholar]

75. Rhoads J.M., Plunkett E., Galanko J., Lichtman S., Taylor L., Maynor A., Weiner T., Freeman K., Guarisco J.L., Wu G.Y. Serum citrulline levels correlate with enteral tolerance and bowel length in infants with short bowel syndrome. J. Pediatr. 2005;146:542–547. doi: 10.1016/j.jpeds.2004.12.027. [PubMed] [CrossRef] [Google Scholar]

76. JianFeng G., Weiming Z., Ning L., Fangnan L., Li T., Nan L., Jieshou L. Serum Citrulline Is a Simple Quantitative Marker for Small Intestinal Enterocytes Mass and Absorption Function in Short Bowel Patients. J. Surg. Res. 2005;127:177–182. doi: 10.1016/j.jss.2005.04.004. [PubMed] [CrossRef] [Google Scholar]

77. Luo M., Fernández-Estívariz C., Manatunga A.K., Bazargan N., Gu L.H., Jones D.P., Klapproth J.M., Sitaraman S.V., Leader L.M., Galloway J.R., et al. Are plasma citrulline and glutamine biomarkers of intestinal absorptive function in patients with short bowel syndrome? J. Parenter. Enteral Nutr. 2007;31:1–7. doi: 10.1177/014860710703100101. [PubMed] [CrossRef] [Google Scholar]

78. Jeppesen P.B., Gabe S.M., Seidner D.L., Lee H.-M., Olivier C. Citrulline correlations in short bowel syndrome–intestinal failure by patient stratification: Analysis of 24 weeks of teduglutide treatment from a randomized controlled study. Clin. Nutr. 2020;39:2479–2486. doi: 10.1016/j.clnu.2019.11.001. [PubMed] [CrossRef] [Google Scholar]

79. Barzał J.A., Szczylik C., Rzepecki P., Jaworska M., Anuszewska E. Plasma citrulline level as a biomarker for cancer therapy-induced small bowel mucosal damage. Acta Biochim. Pol. 2014;61:615–631. doi: 10.18388/abp.2014_1823. [PubMed] [CrossRef] [Google Scholar]

80. Blijlevens N.M.A., Lutgens L.C.H.W., Schattenberg A.V.M.B., Donnelly J.P. Citrulline: A potentially simple quantitative marker of intestinal epithelial damage following myeloablative therapy. Bone Marrow Transplant. 2004;34:193–196. doi: 10.1038/sj.bmt.1704563. [PubMed] [CrossRef] [Google Scholar]

81. Crenn P., De Truchis P., Neveux N., Galpérine T., Cynober L., Melchior J.C. Plasma citrulline is a biomarker of enterocyte mass and an indicator of parenteral nutrition in HIV-infected patients. Am. J. Clin. Nutr. 2009;90:587–594. doi: 10.3945/ajcn.2009.27448. [PubMed] [CrossRef] [Google Scholar]

82. Pironi L., Guidetti M., Lauro A., Zanfi C., Agostini F., D’Errico A., Altimari A., Pinna A.D. Plasma citrulline after small bowel transplantation: Effect of time from transplantation, acute cellular rejection, and renal failure. Clin. Transplant. 2015;29:1039–1046. doi: 10.1111/ctr.12630. [PubMed] [CrossRef] [Google Scholar]

83. Vecino Lopez R., Andrés Moreno A.M., Ramos Boluda E., Martinez-Ojinaga Nodal E., Hernanz Macías A., Prieto Bozano G., Lopez Santamaria G., Tovar Larrucea J.A. Plasma citrulline concentration as a biomarker of intestinal function in short bowel syndrome and in intestinal transplant. An. Pediatr. 2013;79:218–223. [PubMed] [Google Scholar]

84. Crenn P., Neveux N., Chevret S., Jaffray P., Cynober L., Melchior J.-C., Annane D. Plasma l-citrulline concentrations and its relationship with inflammation at the onset of septic shock: A pilot study. J. Crit. Care. 2014;29:315.e1–315.e6. doi: 10.1016/j.jcrc.2013.11.015. [PubMed] [CrossRef] [Google Scholar]

85. Krief J.O., De Tauriers P.H., Dumenil C., Neveux N., Dumoulin J., Giraud V., Labrune S., Tisserand J., Julie C., Emile J.-F., et al. Role of antibiotic use, plasma citrulline and blood microbiome in advanced non-small cell lung cancer patients treated with nivolumab. J. Immunother. Cancer. 2019;7:176. doi: 10.1186/s40425-019-0658-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Fragkos K.C., Forbes A. Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2018;6:181–191. doi: 10.1177/2050640617737632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Chang R.W., Javid P.J., Oh J.-T., Andreoli S., Kim H.B., Fauza D., Jaksic T. Serial Transverse Enteroplasty Enhances Intestinal Function in a Model of Short Bowel Syndrome. Ann. Surg. 2006;243:223–228. doi: 10.1097/01.sla.0000197704.76166.07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Frongia G., Kessler M., Weih S., Nickkholgh A., Mehrabi A., Holland-Cunz S. Comparison of LILT and STEP procedures in children with short bowel syndrome—A systematic review of the literature. J. Pediatr. Surg. 2013;48:1794–1805. doi: 10.1016/j.jpedsurg.2013.05.018. [PubMed] [CrossRef] [Google Scholar]

89. Amiot A., Messing B., Corcos O., Panis Y., Joly F. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin. Nutr. 2012;32:368–374. doi: 10.1016/j.clnu.2012.08.007. [PubMed] [CrossRef] [Google Scholar]

90. Bianchi A. Intestinal loop lengthening—A technique for increasing small intestinal length. J. Pediatr. Surg. 1980;15:145–151. doi: 10.1016/S0022-3468(80)80005-4. [PubMed] [CrossRef] [Google Scholar]

91. van Vliet M.J., Tissing W.J., Rings E.H., Koetse H.A., Stellaard F., Kamps W.A., de Bont E.S. Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr. Blood Cancer. 2009;53:1188–1194. doi: 10.1002/pbc.22210. [PubMed] [CrossRef] [Google Scholar]

92. Abou-Alfa G., Qin S., Ryoo B.-Y., Lu S.-N., Yen C.-J., Feng Y.-H., Lim H., Izzo F., Colombo M., Sarker D., et al. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann. Oncol. 2018;29:1402–1408. doi: 10.1093/annonc/mdy101. [PubMed] [CrossRef] [Google Scholar]

93. Cheng P., Leung Y., Lo W., Tsui S.M., Lam K. Remission of hepatocellular carcinoma with arginine depletion induced by systemic release of endogenous hepatic arginase due to transhepatic arterial embolisation, augmented by high-dose insulin: Arginase as a potential drug candidate for hepatocellular carcinoma. Cancer Lett. 2005;224:67–80. doi: 10.1016/j.canlet.2004.10.050. [PubMed] [CrossRef] [Google Scholar]

94. Szlosarek P.W., Steele J.P., Nolan L., Gilligan D., Taylor P., Spicer J., Lind M., Mitra S., Shamash J., Phillips M.M., et al. Arginine Deprivation with Pegylated Arginine Deiminase in Patients with Argininosuccinate Synthetase 1-Deficient Malignant Pleural Mesothelioma: A Randomized Clinical Trial. JAMA Oncol. 2017;3:58–66. doi: 10.1001/jamaoncol.2016.3049. [PubMed] [CrossRef] [Google Scholar]

95. Hall P.E., Lewis R., Syed N., Shaffer R., Evanson J., Ellis S., Williams M., Feng X., Johnston A., Thomson J.A., et al. A Phase I Study of Pegylated Arginine Deiminase (Pegargiminase), Cisplatin, and Pemetrexed in Argininosuccinate Synthetase 1-Deficient Recurrent High-grade Glioma. Clin. Cancer Res. 2019;25:2708–2716. doi: 10.1158/1078-0432.CCR-18-3729. [PubMed] [CrossRef] [Google Scholar]

96. Yao S., Janku F., Subbiah V., Stewart J., Patel S.P., Kaseb A., Westin S.N., Naing A., Tsimberidou A.M., Hong D., et al. Phase 1 trial of ADI-PEG20 plus cisplatin in patients with pretreated metastatic melanoma or other advanced solid malignancies. Br. J. Cancer. 2021;124:1533–1539. doi: 10.1038/s41416-020-01230-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Blijlevens N.M.A., Donnelly J.P., Naber A.H.J., Schattenberg A.V.M.B., Depauw B.E. A randomised, double-blinded, placebo-controlled, pilot study of parenteral glutamine for allogeneic stem cell transplant patients. Support. Care Cancer. 2005;13:790–796. doi: 10.1007/s00520-005-0790-y. [PubMed] [CrossRef] [Google Scholar]

98. Fekkes D., Bannink M., Kruit W.H.J., Van Gool A.R., Mulder P.G.H., Sleijfer S., Eggermont A.M.M., Stoter G. Influence of pegylated interferon-α therapy on plasma levels of citrulline and arginine in melanoma patients. Amino Acids. 2006;32:121–126. doi: 10.1007/s00726-006-0284-3. [PubMed] [CrossRef] [Google Scholar]

99. Grilz E., Mauracher L., Posch F., Königsbrügge O., Zöchbauer-Müller S., Marosi C., Lang I., Pabinger I., Ay C. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br. J. Haematol. 2019;186:311–320. doi: 10.1111/bjh.15906. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Broer S., Fairweather S.J. Amino Acid Transport. Across the Mammalian Intestine. Compr. Physiol. 2018;9:343–373. [PubMed] [Google Scholar]

101. Bröer S. Amino Acid Transport Across Mammalian Intestinal and Renal Epithelia. Physiol. Rev. 2008;88:249–286. doi: 10.1152/physrev.00018.2006. [PubMed] [CrossRef] [Google Scholar]

102. Bröer S. Amino Acid Transporters as Disease Modifiers and Drug Targets. SLAS Discov. Adv. Life Sci. R&D. 2018;23:303–320. doi: 10.1177/2472555218755629. [PubMed] [CrossRef] [Google Scholar]

103. Fleck C., Schwertfeger M., Taylor P.M. Regulation of renal amino acid (AA) transport by hormones, drugs and xenobiotics—A review. Amino Acids. 2003;24:347–374. doi: 10.1007/s00726-002-0316-6. [PubMed] [CrossRef] [Google Scholar]

104. Rudnick G., Krämer R., Blakely R.D., Murphy D.L., Verrey F. The SLC6 transporters: Perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflügers Arch. Eur. J. Physiol. 2013;466:25–42. doi: 10.1007/s00424-013-1410-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Camargo S.M., Singer D., Makrides V., Huggel K., Pos K.M., Wagner C.A., Kuba K., Danilczyk U., Skovby F., Kleta R., et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009;136:872–882. doi: 10.1053/j.gastro.2008.10.055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Singer D., Camargo S.M., Ramadan T., Schäfer M., Mariotta L., Herzog B., Huggel K., Werner S., Penninger J.M., Verrey F., et al. Defective intestinal amino acid absorption in Ace2 null mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012;303:G686–G695. [PubMed] [Google Scholar]

107. Camargo S.M.R., Vuille-Dit-Bille R., Mariotta L., Ramadan T., Huggel K., Singer D., Götze O., Verrey F. The Molecular Mechanism of Intestinal Levodopa Absorption and Its Possible Implications for the Treatment of Parkinson’s Disease. J. Pharmacol. Exp. Ther. 2014;351:114–123. doi: 10.1124/jpet.114.216317. [PubMed] [CrossRef] [Google Scholar]

108. Palacín M., Nunes V., Font-Llitjós M., Jiménez-Vidal M., Fort J., Gasol E., Pineda M., Feliubadaló L., Chillarón J., Zorzano A. The Genetics of Heteromeric Amino Acid Transporters. Physiology. 2005;20:112–124. doi: 10.1152/physiol.00051.2004. [PubMed] [CrossRef] [Google Scholar]

109. Wagner C.A., Lang F., Broer S. Function and structure of heterodimeric amino acid transporters. Am. J. Physiol. Physiol. 2001;281:C1077–C1093. doi: 10.1152/ajpcell.2001.281.4.C1077. [PubMed] [CrossRef] [Google Scholar]

110. Danilczyk U., Sarao R., Remy C., Benabbas C., Stange G., Richter A., Arya S., Pospisilik J.A., Singer D., Camargo S., et al. Essential role for collectrin in renal amino acid transport. Nat. Cell Biol. 2006;444:1088–1091. doi: 10.1038/nature05475. [PubMed] [CrossRef] [Google Scholar]

111. Camargo S.M., Vuille-Dit-Bille R.N., Meier C.F., Verrey F. ACE2 and gut amino acid transport. Clin. Sci. 2020;134:2823–2833. doi: 10.1042/CS20200477. [PubMed] [CrossRef] [Google Scholar]

112. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637. doi: 10.1002/path.1570. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. To K.F., Lo A.W. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): The tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2) J. Pathol. 2004;203:740–743. doi: 10.1002/path.1597. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292. doi: 10.1016/j.cell.2020.02.058. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Vig B.S., Stouch T.R., Timoszyk J.K., Quan Y., Wall D.A., Smith R.L., Faria T.N. Human PEPT1 Pharmacophore Distinguishes between Dipeptide Transport and Binding. J. Med. Chem. 2006;49:3636–3644. doi: 10.1021/jm0511029. [PubMed] [CrossRef] [Google Scholar]

117. Nässl A.-M., Rubio-Aliaga I., Fenselau H., Marth M.K., Kottra G., Daniel H. Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1. Am. J. Physiol. Liver Physiol. 2011;301:G128–G137. doi: 10.1152/ajpgi.00017.2011. [PubMed] [CrossRef] [Google Scholar]

118. Böhmer C., Bröer A., Munzinger M., Kowalczuk S., Rasko J.E.J., Lang F., Bröer S. Characterization of mouse amino acid transporter B0AT1 (slc6a19) Biochem. J. 2005;389:745–751. doi: 10.1042/BJ20050083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Bröer S., Bröer A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017;474:1935–1963. doi: 10.1042/BCJ20160822. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Vuille-Dit-Bille R., Ha-Huy R., Stover J.F. Changes in plasma phenylalanine, isoleucine, leucine, and valine are associated with significant changes in intracranial pressure and jugular venous oxygen saturation in patients with severe traumatic brain injury. Amino Acids. 2011;43:1287–1296. doi: 10.1007/s00726-011-1202-x. [PubMed] [CrossRef] [Google Scholar]

121. Guetg A., Mariotta L., Bock L., Herzog B., Fingerhut R., Camargo S., Verrey F. Essential amino acid transporter Lat4 (Slc43a2) is required for mouse development. J. Physiol. 2015;593:1273–1289. doi: 10.1113/jphysiol.2014.283960. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Vilches C., Boiadjieva-Knöpfel E., Bodoy S., Camargo S., De Heredia M.L., Prat E., Ormazabal A., Artuch R., Zorzano A., Verrey F., et al. Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids. J. Am. Soc. Nephrol. 2018;29:1624–1635. doi: 10.1681/ASN.2017111205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Boiadjieva E., Vilches C., Bodoy S., Oparija L., Jando J., Nunes V., Verrey F., Palacin M. Cooperation of Basolateral Epithelial Amino Acid Transporters TAT1 and LAT2 Investigated in a Double Knockout Mouse Model. FASEB J. 2015;29:969.4. doi: 10.1096/fasebj.29.1_supplement.969.4. [CrossRef] [Google Scholar]

124. Verrey F., Christian M., Grégoire R., Lukas C.K. Glycoprotein-associated amino acid exchangers: Broadening the range of transport specificity. Pflügers Archiv. 2000;440:503–512. doi: 10.1007/s004240000274. [PubMed] [CrossRef] [Google Scholar]

125. Vuille-Dit-Bille R.N., Camargo S.M., Emmenegger L., Sasse T., Kummer E., Jando J., Hamie Q.M., Meier C.F., Hunziker S., Forras-Kaufmann Z., et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids. 2015;47:693–705. doi: 10.1007/s00726-014-1889-6. [PubMed] [CrossRef] [Google Scholar]

126. Pineda M., Fernández E., Torrents D., Estevez R., López C., Camps M., Lloberas J., Zorzano A., Palacín M. Identification of a Membrane Protein, LAT-2, That Co-expresses with 4F2 Heavy Chain, an L-type Amino Acid Transport Activity with Broad Specificity for Small and Large Zwitterionic Amino Acids. J. Biol. Chem. 1999;274:19738–19744. doi: 10.1074/jbc.274.28.19738. [PubMed] [CrossRef] [Google Scholar]

127. Hueso T., Ekpe K., Mayeur C., Gatse A., Curt M.J.-C., Gricourt G., Rodriguez C., Burdet C., Ulmann G., Neut C., et al. Impact and consequences of intensive chemotherapy on intestinal barrier and microbiota in acute myeloid leukemia: The role of mucosal strengthening. Gut Microbes. 2020;12 doi: 10.1080/19490976.2020.1800897. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Baier J., Gänsbauer M., Giessler C., Arnold H., Muske M., Schleicher U., Lukassen S., Ekici A.B., Rauh M., Daniel C., et al. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J. Clin. Investig. 2020;130:5703–5720. doi: 10.1172/JCI126923. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Kao C.C., Cope J.L., Hsu J.W., Dwarkanath P., Karnes J.M., Luna R.A., Hollister E.B., Thame M.M., Kurpad A.V., Jahoor F. The Microbiome, Intestinal Function, and Arginine Metabolism of Healthy Indian Women Are Different from Those of American and Jamaican Women. J. Nutr. 2015;146:706–713. doi: 10.3945/jn.115.227579. [PubMed] [CrossRef] [Google Scholar]

130. Wegner N., Wait R., Sroka A., Eick S., Nguyen K.-A., Lundberg K., Kinloch A., Culshaw S., Potempa J., Venables P.J. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: Implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010;62:2662–2672. doi: 10.1002/art.27552. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Gabarrini G., De Smit M., Westra J., Brouwer E., Vissink A., Zhou K., Rossen J., Stobernack T., Van Dijl J.M., Van Winkelhoff A.J. The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis. Sci. Rep. 2015;5:13936. doi: 10.1038/srep13936. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Curran A.M., Naik P., Giles J.T., Darrah E. PAD enzymes in rheumatoid arthritis: Pathogenic effectors and autoimmune targets. Nat. Rev. Rheumatol. 2020;16:301–315. doi: 10.1038/s41584-020-0409-1. [PubMed] [CrossRef] [Google Scholar]

133. Allerton T.D., Proctor D.N., Stephens J.M., Dugas T.R., Spielmann G., Irving B.A. l-Citrulline Supplementation: Impact on Cardiometabolic Health. Nutrients. 2018;10:921. doi: 10.3390/nu10070921. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Hecker M., Sessa W.C., Harris H.J., Anggard E.E., Vane J.R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: Cultured endothelial cells recycle L-citrulline to L-arginine. Proc. Natl. Acad. Sci. USA. 1990;87:8612–8616. doi: 10.1073/pnas.87.21.8612. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Werner A., Koschke M., Leuchtner N., Luckner-Minden C., Habermeier A., Rupp J., Heinrich C., Conradi R., Closs E.I., Munder M. Reconstitution of T Cell Proliferation under Arginine Limitation: Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and Use It to Regenerate Arginine after Induction of Argininosuccinate Synthase Expression. Front. Immunol. 2017;8:864. doi: 10.3389/fimmu.2017.00864. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Urschel K.L., Shoveller A.K., Uwiera R.R.E., Pencharz P.B., Ball R.O. Citrulline Is an Effective Arginine Precursor in Enterally Fed Neonatal Piglets1,2. J. Nutr. 2006;136:1806–1813. doi: 10.1093/jn/136.7.1806. [PubMed] [CrossRef] [Google Scholar]

137. Morris S.M. Arginases and arginine deficiency syndromes. Curr. Opin. Clin. Nutr. Metab. Care. 2012;15:64–70. doi: 10.1097/MCO.0b013e32834d1a08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Gramaglia I., Velez J., Chang Y.-S., Caparros-Wanderley W., Combes V., Grau G., Stins M.F., Van Der Heyde H.C. Citrulline protects mice from experimental cerebral malaria by ameliorating hypoargininemia, urea cycle changes and vascular leak. PLoS ONE. 2019;14:e0213428. doi: 10.1371/journal.pone.0213428. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Kim I.-Y., Schutzler S.E., Schrader A., Spencer H.J., Azhar G., Deutz N.E.P., Wolfe R.R. Acute ingestion of citrulline stimulates nitric oxide synthesis but does not increase blood flow in healthy young and older adults with heart failure. Am. J. Physiol. Metab. 2015;309:E915–E924. doi: 10.1152/ajpendo.00339.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Dikalova A., Aschner J.L., Kaplowitz M.R., Cunningham G., Summar M., Fike C.D. Combined L-citrulline and tetrahydrobiopterin therapy improves NO signaling and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020;318:L762–L772. doi: 10.1152/ajplung.00280.2019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Fike C.D., Summar M., Aschner J.L. L-citrulline provides a novel strategy for treating chronic pulmonary hypertension in newborn infants. Acta Paediatr. 2014;103:1019–1026. doi: 10.1111/apa.12707. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Hotta Y., Shiota A., Kataoka T., Motonari M., Maeda Y., Morita M., Kimura K. Oral L-citrulline supplementation improves erectile function and penile structure in castrated rats. Int. J. Urol. 2014;21:608–612. doi: 10.1111/iju.12362. [PubMed] [CrossRef] [Google Scholar]

143. Goron A., Lamarche F., Blanchet S., Delangle P., Schlattner U., Fontaine E., Moinard C. Citrulline stimulates muscle protein synthesis, by reallocating ATP consumption to muscle protein synthesis. J. Cachex Sarcopenia Muscle. 2019;10:919–928. doi: 10.1002/jcsm.12435. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Le Plénier S., Walrand S., Noirt R., Cynober L., Moinard C. Effects of leucine and citrulline versus non-essential amino acids on muscle protein synthesis in fasted rat: A common activation pathway? Amino Acids. 2011;43:1171–1178. doi: 10.1007/s00726-011-1172-z. [PubMed] [CrossRef] [Google Scholar]

145. Kaore S.N., Amane H.S., Kaore N.M. Citrulline: Pharmacological perspectives and its role as an emerging biomarker in future. Fundam. Clin. Pharmacol. 2012;27:35–50. doi: 10.1111/j.1472-8206.2012.01059.x. [PubMed] [CrossRef] [Google Scholar]

146. Ouelaa W., Jegatheesan P., M’Bouyou-Boungou J., Vicente C., Nakib S., Nubret E., De Bandt J.P. Citrulline decreases hepatic endotoxin-induced injury in fructose-induced non-alcoholic liver disease: An ex vivo study in the isolated perfused rat liver. Br. J. Nutr. 2017;117:1487–1494. doi: 10.1017/S0007114517001453. [PubMed] [CrossRef] [Google Scholar]

147. Ginguay A., Regazzetti A., Laprevote O., Moinard C., De Bandt J.-P., Cynober L., Billard J.-M., Allinquant B., Dutar P. Citrulline prevents age-related LTP decline in old rats. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-56598-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Jegatheesan P., Beutheu S., Ventura G., Sarfati G., Nubret E., Kapel N., Waligora-Dupriet A.-J., Bergheim I., Cynober L., De-Bandt J.-P. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease. Clin. Nutr. 2015;35:175–182. doi: 10.1016/j.clnu.2015.01.021. [PubMed] [CrossRef] [Google Scholar]

149. Grimble G.K. Adverse Gastrointestinal Effects of Arginine and Related Amino Acids. J. Nutr. 2007;137:1693S–1701S. doi: 10.1093/jn/137.6.1693S. [PubMed] [CrossRef] [Google Scholar]

150. Lassala A., Bazer F.W., Cudd T.A., Li P., Li X., Satterfield M.C., Spencer T.E., Wu G. Intravenous Administration of L-Citrulline to Pregnant Ewes Is More Effective Than L-Arginine for Increasing Arginine Availability in the Fetus. J. Nutr. 2009;139:660–665. doi: 10.3945/jn.108.102020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Tran N., Amarger V., Bourdon A., Misbert E., Grit I., Winer N., Darmaun D. Maternal citrulline supplementation en-hances placental function and fetal growth in a rat model of IUGR: Involvement of insulin-like growth factor 2 and angio-genic factors. J. Matern. Fetal Neonatal Med. 2017;30:1906–1911. doi: 10.1080/14767058.2016.1229768. [PubMed] [CrossRef] [Google Scholar]

152. Bourdon A., Parnet P., Nowak C., Tran N.-T., Winer N., Darmaun D. L-Citrulline Supplementation Enhances Fetal Growth and Protein Synthesis in Rats with Intrauterine Growth Restriction. J. Nutr. 2016;146:532–541. doi: 10.3945/jn.115.221267. [PubMed] [CrossRef] [Google Scholar]

153. Powers R. L-citrulline administration increases the arginine /ADMA ratio, decxrases blood pressure and improves vascular function in obese pregnant women. Prenancy Hypertens. Int. J. Women’s Cardiovasc. Health. 2015;5:4. [Google Scholar]

154. Häberle J., Boddaert N., Burlina A., Chakrapani A., Dixon M., Huemer M., Karall D., Martinelli D., Crespo P.S., Santer R., et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J. Rare Dis. 2012;7:32. doi: 10.1186/1750-1172-7-32. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. Barr F.E., Tirona R.G., Taylor M.B., Rice G., Arnold J., Cunningham G., Smith H.A., Campbell A., Canter J.A., Christian K.G., et al. Pharmacokinetics and safety of intravenously administered citrulline in children undergoing congenital heart surgery: Potential therapy for postoperative pulmonary hypertension. J. Thorac. Cardiovasc. Surg. 2007;134:319–326. doi: 10.1016/j.jtcvs.2007.02.043. [PubMed] [CrossRef] [Google Scholar]

156. Schwedhelm E., Maas R., Freese R., Jung D., Lukacs Z., Jambrecina A., Spickler W., Schulze F., Böger R.H. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: Impact on nitric oxide metabolism. Br. J. Clin. Pharmacol. 2008;65:51–59. doi: 10.1111/j.1365-2125.2007.02990.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Khalaf D., Krüger M., Wehland M., Infanger M., Grimm D. The Effects of Oral l-Arginine and l-Citrulline Supplementation on Blood Pressure. Nutrients. 2019;11:1679. doi: 10.3390/nu11071679. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Rashid J., Kumar S.S., Job K.M., Liu X., Fike C.D., Sherwin C.M.T. Therapeutic Potential of Citrulline as an Arginine Supplement: A Clinical Pharmacology Review. Pediatr. Drugs. 2020;22:279–293. doi: 10.1007/s40272-020-00384-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Xuan C., Lun L.-M., Zhao J.-X., Wang H.-W., Wang J., Ning C.-P., Liu Z., Zhang B.-B., He G.-W. L-citrulline for protection of endothelial function from ADMA–induced injury in porcine coronary artery. Sci. Rep. 2015;5:srep10987. doi: 10.1038/srep10987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Hayashi T., Juliet P.A.R., Matsui-Hirai H., Miyazaki A., Fukatsu A., Funami J., Iguchi A., Ignarro L.J. L-citrulline and L-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits. Proc. Natl. Acad. Sci. USA. 2005;102:13681–13686. doi: 10.1073/pnas.0506595102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Barkhidarian B., Khorshidi M., Shab-Bidar S., Hashemi B. Effects of L-citrulline supplementation on blood pressure: A systematic review and meta-analysis. Avicenna J. Phytomed. 2019;9:10–20. [PMC free article] [PubMed] [Google Scholar]

162. Smith H.A., Canter J.A., Christian K.G., Drinkwater D.C., Scholl F.G., Christman B.W., Rice G.D., Barr F.E., Summar M. Nitric oxide precursors and congenital heart surgery: A randomized controlled trial of oral citrulline. J. Thorac. Cardiovasc. Surg. 2006;132:58–65. doi: 10.1016/j.jtcvs.2006.02.012. [PubMed] [CrossRef] [Google Scholar]

163. Holguin F., Grasemann H., Sharma S., Winnica D., Wasil K., Smith V., Cruse M.H., Perez N., Coleman E., Scialla T.J., et al. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight. 2019;4 doi: 10.1172/jci.insight.131733. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Bailey S., Blackwell J.R., Lord T., Vanhatalo A., Winyard P., Jones A.M. l-Citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. J. Appl. Physiol. 2015;119:385–395. doi: 10.1152/japplphysiol.00192.2014. [PubMed] [CrossRef] [Google Scholar]

165. Cutrufello P.T., Gadomski S.J., Zavorsky G.S. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J. Sports Sci. 2015;33:1459–1466. doi: 10.1080/02640414.2014.990495. [PubMed] [CrossRef] [Google Scholar]

166. Marealle A.I., Siervo S.M., Wassel L., Bluck A.M., Prentice O., Minzi P., Sasi A., Kamuhabwa D., Soka J., Makani S.E. A Pilot Study of a Non-Invasive Oral Nitrate Stable Isotopic Method Suggests That Arginine and Citrulline Supplementation Increases Whole-Body No Production in Tanzanian Children with Sickle Cell Disease. Nitric Oxide. 2018;74:532–541. doi: 10.1016/j.niox.2017.12.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Cox S.E., Ellins E.A., Marealle A.I., Newton C.R., Soka D., Sasi P., di Tanna G.L., Johnson W., Makani J., Prentice A.M., et al. Ready-to-Use Food Supplement, with or without Arginine and Citrulline, with Daily Chloroquine in Tanzanian Children with Sickle-Cell Disease: A Double-Blind, Random Order Crossover Trial. Lancet Haematol. 2018;5:e147–e160. doi: 10.1016/S2352-3026(18)30020-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Lanyero B., Grenov B., Barungi N.N., Namusoke H., Michaelsen K.F., Mupere E., Mølgaard C., Jiang P., Frøkiær H., Wiese M., et al. Correlates of Gut Function in Children Hospitalized for Severe Acute Malnutrition, a Cross-sectional Study in Uganda. J. Pediatr. Gastroenterol. Nutr. 2019;69:292–298. doi: 10.1097/MPG.0000000000002381. [PubMed] [CrossRef] [Google Scholar]

169. Ioannou H.P., Diamanti E., Piretzi K., Drossou-Agakidou V., Augoustides-Savvopoulou P. Plasma citrulline levels in preterm neonates with necrotizing enterocolitis. Early Hum. Dev. 2012;88:563–566. doi: 10.1016/j.earlhumdev.2011.11.008. [PubMed] [CrossRef] [Google Scholar]

170. Gosselin K.B., Feldman H.A., Sonis A., Bechard L.J., Kellogg M., Gura K., Venick R., Gordon C.M., Guinan E.C., Duggan C. Serum Citrulline as a Biomarker of Gastrointestinal Function During Hematopoietic Cell Transplantation in Children. J. Pediatr. Gastroenterol. Nutr. 2014;58:709–714. doi: 10.1097/MPG.0000000000000335. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Ioannou H.P., Fotoulaki M., Pavlitou A., Efstratiou I., Augoustides-Savvopoulou P. Plasma citrulline levels in paediatric patients with celiac disease and the effect of a gluten-free diet. Eur. J. Gastroenterol. Hepatol. 2011;23:245–249. doi: 10.1097/MEG.0b013e3283438ad7. [PubMed] [CrossRef] [Google Scholar]

172. Posod A., Komazec I.O., Kager K., Peglow U.P., Griesmaier E., Schermer E., Würtinger P., Baumgartner D., Kiechl-Kohlendorfer U. Former Very Preterm Infants Show an Unfavorable Cardiovascular Risk Profile at a Preschool Age. PLoS ONE. 2016;11:e0168162. doi: 10.1371/journal.pone.0168162. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Steinbach M., Clark R.H., Kelleher A.S., Flores C., White R., Chace D.H., Spitzer A.R., For the Pediatrix Amino-Acid Study Group Demographic and nutritional factors associated with prolonged cholestatic jaundice in the premature infant. J. Perinatol. 2007;28:129–135. doi: 10.1038/sj.jp.7211889. [PubMed] [CrossRef] [Google Scholar]

174. Silvera Ruiz S., Grosso C.L., Tablada M., Cabrera M., de Kremer R.D., Juaneda E., Laróvere L.E. Efficacy of oral citrulline supplementation to decrease the risk of pulmonary hypertension after congenital heart disease surgery. Rev. Fac. Cienc. Med. 2020;77:249–253. [PubMed] [Google Scholar]

175. de Betue C.T., Joosten K.F., Deutz N.E., Vreugdenhil A.C., van Waardenburg D.A. Arginine appearance and nitric oxide synthesis in critically ill infants can be increased with a protein-energy-enriched enteral formula. Am. J. Clin. Nutr. 2013;98:907–916. doi: 10.3945/ajcn.112.042523. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Roubenoff R. Sarcopenia: A major modifiable cause of frailty in the elderly. J. Nutr. Heal. Aging. 2000;4:140–142. [PubMed] [Google Scholar]

177. Manini T.M., Clark B.C. Dynapenia and Aging: An Update. J. Gerontol. Ser. A. 2011;67:28–40. doi: 10.1093/gerona/glr010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.-P., Rolland Y., Schneider S., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Short K.R., Bigelow M.L., Kahl J., Singh R., Coenen-Schimke J., Raghavakaimal S., Nair K.S. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. USA. 2005;102:5618–5623. doi: 10.1073/pnas.0501559102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Lanza I., Short D.K., Short K., Raghavakaimal S., Basu R., Joyner M.J., McConnell J.P., Nair K.S. Endurance Exercise as a Countermeasure for Aging. Diabetes. 2008;57:2933–2942. doi: 10.2337/db08-0349. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Faure C., Raynaud-Simon A., Ferry A., Daugé V., Cynober L., Aussel C., Moinard C. Leucine and citrulline modulate muscle function in malnourished aged rats. Amino Acids. 2011;42:1425–1433. doi: 10.1007/s00726-011-0841-2. [PubMed] [CrossRef] [Google Scholar]

182. Thibault R., Flet L., Vavasseur F., Lemerle M., Ferchaud-Roucher V., Picot D., Darmaun D. Oral citrulline does not affect whole body protein metabolism in healthy human volunteers: Results of a prospective, randomized, double-blind, cross-over study. Clin. Nutr. 2011;30:807–811. doi: 10.1016/j.clnu.2011.06.005. [PubMed] [CrossRef] [Google Scholar]

183. Jirka A., Layec S., Picot D., Bernon-Ferreira S., Grasset N., Flet L., Thibault R., Darmaun D. Effect of oral citrulline supplementation on whole body protein metabolism in adult patients with short bowel syndrome: A pilot, randomized, double-blind, cross-over study. Clin. Nutr. 2019;38:2599–2606. doi: 10.1016/j.clnu.2018.12.030. [PubMed] [CrossRef] [Google Scholar]

184. Weimann A., Braga M., Carli F., Higashiguchi T., Hübner M., Klek S., Laviano A., Ljungqvist O., Lobo D.N., Martindale R., et al. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017;36:623–650. doi: 10.1016/j.clnu.2017.02.013. [PubMed] [CrossRef] [Google Scholar]

185. Scheede-Bergdahl C., Minnella E.M., Carli F. Multi-modal prehabilitation: Addressing the why, when, what, how, who and where next? Anaesthesia. 2019;74:20–26. doi: 10.1111/anae.14505. [PubMed] [CrossRef] [Google Scholar]

186. Darabi Z., Darand M., Yari Z., Hedayati M., Faghihi A., Agah S., Hekmatdoost A. Inflammatory markers response to citrulline supplementation in patients with non-alcoholic fatty liver disease: A randomized, double blind, placebo-controlled, clinical trial. BMC Res. Notes. 2019;12:1–5. doi: 10.1186/s13104-019-4130-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Marealle A., Makani J., Prentice A., Kamuhabwa A., Sasi P., Minzi O., Siervo M., Cox S., Wassell S. Systemic Nitric Oxide (NO) Production is Increased in Children with Sickle Cell Disease (SCD) Receiving Fortified Supplementary Food. FASEB J. 2015;29:LB276. doi: 10.1096/fasebj.29.1_supplement.lb276. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Raphael B.P., Nurko S., Jiang H., Hart K., Kamin D.S., Jaksic T., Duggan C. Cisapride Improves Enteral Tolerance in Pediatric Short-bowel Syndrome With Dysmotility. J. Pediatr. Gastroenterol. Nutr. 2011;52:590–594. doi: 10.1097/MPG.0b013e3181fe2d7a. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Kim Y.J., Park J.H., Yun I.H., Kim Y.S. A prospective comparison of acute intestinal toxicity following whole pelvic versus small field intensity-modulated radiotherapy for prostate cancer. Onco Targets Ther. 2016;9:1319–1325. doi: 10.2147/OTT.S96646. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Patiroglu T., Sahin N., Unal E., Kendirci M., Ozdemir M.A., Karakukcu M. Effectiveness of ankaferd blood stopper in prophylaxis and treatment of oral mucositis seen in childhood cancers and correlation with plasma citrulline levels. Pediatric Blood Cancer. 2015;62:S336–S337. [Google Scholar]

191. Vidal-Casariego A., Calleja-Fernández A., De Urbina-González J.J.O., Cano-Rodríguez I., Cordido F., Ballesteros-Pomar M.D. Efficacy of glutamine in the prevention of acute radiation enteritis: A randomized controlled trial. J. Parenter. Enter. Nutr. 2014;38:205–213. doi: 10.1177/0148607113478191. [PubMed] [CrossRef] [Google Scholar]

192. de Betue C.T., van Waardenburg D.A., Deutz N.E., van Eijk H.M., van Goudoever J.B., Luiking Y.C., Zimmermann L.J., Joosten K.F. Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: A double-blind randomised controlled trial. Arch. Dis. Child. 2011;96:817–822. doi: 10.1136/adc.2010.185637. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

193. Gills J.L., Glenn J.M., Gray M., Romer B., Lu H. Acute citrulline-malate supplementation is ineffective during aerobic cycling and subsequent anaerobic performance in recreationally active males. Eur. J. Sport Sci. 2020;21:77–83. doi: 10.1080/17461391.2020.1722757. [PubMed] [CrossRef] [Google Scholar]

194. Piton G., Manzon C., Cypriani B., Carbonnel F., Capellier G. Acute intestinal failure in critically ill patients: Is plasma citrulline the right marker? Intensive Care Med. 2011;37:911–917. doi: 10.1007/s00134-011-2172-x. [PubMed] [CrossRef] [Google Scholar]

195. Viana M., Becce F., Schmidt S., Bagnoud G., Berger M., Deutz N. Beta-hydroxy-beta-methylbutyrate (HMB) modifies amino acid metabolism in critically ill patients. a RCT. Clin. Nutr. ESPEN. 2020;40:428. doi: 10.1016/j.clnesp.2020.09.074. [PubMed] [CrossRef] [Google Scholar]

196. Ware L.B., Magarik J.A., Wickersham N., Cunningham G., Rice T.W., Christman B.W., Wheeler A.P., Bernard G.R., Summar M.L. Low plasma citrulline levels are associated with acute respiratory distress syndrome in patients with severe sepsis. Crit. Care. 2013;17:R10. doi: 10.1186/cc11934. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Jirka A., Layec S., Picot D., Bernon-Ferreira S., Darmaun D. SUN-P234: Effect of Citrulline Supplementation on Protein Metabolism in Patients with Short Bowel Syndrome: A Stable Isotope Study. Clin. Nutr. 2016;35:S131. doi: 10.1016/S0261-5614(16)30577-5. [PubMed] [CrossRef] [Google Scholar]

198. Picot D., Garin L., Trivin F., Kossovsky M.P., Darmaun D., Thibault R. Plasma citrulline is a marker of absorptive small bowel length in patients with transient enterostomy and acute intestinal failure. Clin. Nutr. 2010;29:235–242. doi: 10.1016/j.clnu.2009.08.010. [PubMed] [CrossRef] [Google Scholar]

199. Hyšpler R., Tichá A., Kaska M., Žaloudková L., Plíšková L., Havel E., Zadak Z. Markers of Perioperative Bowel Complications in Colorectal Surgery Patients. Dis. Markers. 2015;2015:428535. doi: 10.1155/2015/428535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]