Tìm tập nghiệm của bất phương trình lớp 12

Bỏ túi 4 cách giải bất phương trình mũ cực nhanh cực đỉnh

Tác giả Minh Châu 931 Tag Lớp 12

Bất phương trình mũ là phần kiến thức rất quan trọng trong chương trình học Phổ thông, đặc biệt là ôn thi THPT Quốc Gia. Mở giấy viết ra và cùng học 4 cách giải bất phương trình mũ siêu nhanh siêu dễ với Vuihoc ngay sau đây.

Muốn giải các bài bất phương trình nhanh tiết kiệm thời gian làm trắc nghiệm thì trước hết phảinắm được kiến thức tổng quan về bất phương trình mũ. Vì vậy hay xem ngay bảng dưới đây nhé!

1. Ôn tập lý thuyết về bất phương trình mũ

1.1. Quy tắc xét dấu biểu thức và các dạng bất phương trình mũ cơ bản

  • Quy tắc xét dấu biểu thức bất phương trình mũ:

- Bước 1: Đặt điều kiện $q[x]\neq 0$

Tìm tất cả các nghiệm của $p[x]; q[x]$ và sắp xếp các nghiệm đó theo thứ tự lớn dần rồi điền vào trục Ox.

- Bước 2: Cho $x\rightarrow +\infty$để xác định dấu của $g[x]$ khi $x\rightarrow +\infty$

- Bước 3: Xác định dấu của các khoảng còn lại dựa vào quy tắc chẵn giữ nguyên, lẻ đổi dấu]:

+ Qua nghiệm bội lẻ thì $g[x]$ đổi dấu

+ Qua nghiệm bội chẵn thì $g[x]$ không đổi dấu.

  • Các dạng bất phương trình mũ đã học

1.2. Bất phương trình mũ

Bất phương trình mũ cơ bản thường có dạng $a^{x}> b; a^{x}< b; a^{x}\geqslant b, a^{x}\leqslant b$ với $a> 0; a\neq 1$

  • Đối với trường hợp $a^{x}> b$ và $a^{x}\geqslant b$, ta có đồ thị minh họa sau:

Như vậy, tập nghiệm của bất phương trình mũ$a^{x}> b$ và $a^{x}\geqslant b$được thể hiện như sau:

$a^{x}> b$Tập nghiệm
$a > 1$$0 < a < 1$
$b\leqslant 0$$R$$R$
$b > 0$$[log_{a}b;+\infty]$$[-\infty; log_{a}b]$

$a^{x}\geqslant b$Tập nghiệm

$a > 1$

$0 < a < 1$
$b\leqslant 0$$R$$R$
$b > 0$$[log_{a}b;+\infty]$$[-\infty; log_{a}b]$
  • Đối với trường hợp $a^{x}< b$ và $a^{x}\leqslant b$

Như vậy, tập nghiệm của bất phương trình$a^{x}< b$ và $a^{x}\leqslant b$

$a^{x}< b$Tập nghiệm
$a > 1$$0 < a < 1$
$b\leqslant 0$$\varnothing$$\varnothing$
$b > 0$$[-\infty, log_{a}b]$$[a;+\infty]$

$a^{x}\geqslant b$Tập nghiệm
$a > 1$0 a^{g[x]}$

- Nếu a>1 thì $a^{f[x]}> a^{g[x]}\Leftrightarrow f[x]> g[x]$[cùng chiều khi $a > 1$]

- Nếu 0 a^{g[x]}\Leftrightarrow [a-1][f[x]- g[x]]> 0$[hoặc xét 2 trường hợp của cơ số].

2.2. Bài tập áp dụng giải bất phương trình mũ

Tham khảo bài tập phương trình bất phương trình mũ kèm đáp án: Tại đây

Ví dụ: Giải bất phương trình mũ $2^{x^{2}-5x+6}> 1$

Giải:

BPT $\Leftrightarrow 2^{x^{2}-5x+6}> 2^{0}$
$\Leftrightarrow x^{2}-5x+6> 0$

$\Leftrightarrow x < 2$ hoặc $x > 3$

3. Chi tiết cách giải bất phương trình mũ bằng phương pháp đặt ẩn phụ

3.1. Lý thuyết cần nhớ

Tùy vào từng dạng mà ta sẽ có những cách giải bất phương trình mũ khác nhau. Tuy nhiên, đối với phương pháp này, chúng ta cần lưu ý đến chiều biến thiên của hàm số.

  • Dạng 1: $m.a^{^{2f[x]}}+ n.a^{^{2=a^{^{f[x]}} [t>0] f[x]}}+p> 0$

- Ta đặt: $t= a^{^{2f[x]}} [t>0]$

- Đưa về dạng phương trình ẩn t, ta được phương trình: $m.t^{2}+n.t+p> 0$

- Tương tự, đối với bất phương trình $m.a^{^{3f[x]}}+ n.a^{^{3f[x]}}+p> 0$, ta cũng đặt

$t=a^{^{f[x]}} [t>0]$rồi đưa về phương trình bậc 3 và giải như bình thường.

  • Dạng 2: $m.a^{^{2f[x]}}+n.ab^{f[x]}+p.b^{2f[x]}> 0$

-Đầu tiên, chia 2 vế của bất phương trình cho $b^{2f[x]}$, ta được phương trình:

$m.a^{^{2f[x]}}+n.ab^{f[x]}+p.b^{2f[x]}> 0\Leftrightarrow m[\frac{a}{b}]^{2f[x]}+ n[\frac{a}{b}]^{f[x]}$

Đặt $t=[\frac{a}{b}]^{f[x]} [t>0]$ $\Rightarrowm.t^{2}\Rightarrow+n.t+p> 0$

- Tương tự, với bất phương trình $m.a^{^{3f[x]}}+ n.[a^{2}.b]^{f[x]}+p[ab^{2}]^{f[x]}+ q [b]^{^{3f[x]}}> 0$

Ta cũng chia cả 2 vế của bất phương trình cho $[b]^{^{3f[x]}}$sau đó đặt $t=[\frac{a}{b}]^{3} [t>0]$ rồi đưa về phương trình bậc 3:$m.t^{3}+n.t^{2}+p.t+q> 0$ và giải như bình thường:

  • Dạng 3:$m.a^{^{2f[x]}}+ n.a^{^{f[x]+g[x]}}+ p.a^{^{2g[x]}}> 0$

- Phân tích bất phương trình, ta có: $m.a^{^{2f[x]}}+ n.a^{^{f[x]+g[x]}}+ p.a^{^{2g[x]}}> 0\Leftrightarrow \Leftrightarrow m.a^{2[^{f[x]-g[x]}]}+ n.a^{2[^{f[x]-g[x]}]}+p> 0$

Đặt: $t=a^{^{f[x]-g[x]}} [t>0]$ $\Rightarrow m.t^{2}+n.t+p> 0$

3.2. Bài tập áp dụng

Tham khảo bài tập phương trình bất phương trình mũ chọn lọc kèm đáp án: Tại đây

a, $\frac{2^{x-1}-2x+1}{2^x-1{^{}}}\leqslant 0\Leftrightarrow\frac{\frac{2}{2^{x}}-2x+1}{2^x-1{^{}}}\leqslant 0$

Đặt $t=2_{x}; t>0$ bất phương trình trở thành:

$\frac{\frac{2}{2t}-t+1}{t-1{^{}}}\leqslant 0\Leftrightarrow \frac{-t^{2}+t+2}{t[t-1]}\leqslant 0$

$\Leftrightarrow0 < t < 1$ hoặc $t\geqslant 2$$\Leftrightarrow$ $x < 0$ hoặc $x\geqslant 1$

Vậy bất phương trình có tập nghiệm: $[-\infty ;0]\cup [1;+\infty]$

4. Chi tiết cách giải bất phương trình mũ bằng phương pháp Logarit hóa

4.1. Lý thuyết cần nhớ

Xét bất phương trình dạng: $a^{f[x]}> b^{g[x]} [a\neq; b> 0]$

- Lấy logarit 2 vế với cơ số $a > 1$, ta được bất phương trình: $log_{a}a^{f[x]}> log_{a}b^{g[x]}\Leftrightarrow f[x]> g[x]log_{a}b$

- Lấy logarit 2 vế với cơ số $0 < a log_{a}b^{g[x]}\Leftrightarrow f[x] > g[x]log_{a}b$

4.2. Bài tập áp dụng

Tham khảo ngay bài tập kèm giải bất phương trình mũ: Tại đây

Ví dụ 1: Giải bất phương trình: $2^{x+2} > 3$

Giải:
BPT: $\Leftrightarrow log_{2}2^{x+2} > log_{2}3$
$\Leftrightarrow x+2 > log_{2}3$
$\Leftrightarrow x > log_{2}3-2= log_{2}$
Vậy tập nghiệm là: $[log_{2}\frac{3}{4};+\infty]$

5. Chi tiết cách giải bất phương trình mũ bằng phương pháp xét tính đơn điệu hàm số

5.1. Lý thuyết cần nhớ

Cho hàm số $y=f[t]$ xác định và liên tục trên tập xác định D:

- Nếu hàm số $f[t]$ luôn đồng biến trên D và $\forall u,v\in D $thì $f[u] > f[v]\Leftrightarrow u>v$

- Nếu hàm số $f[t]$ luôn nghịch biến trên D và $\forall u,v\in D$thì $f[v] > f[u]\Leftrightarrow u 13$

Điều kiện: $\left\{\begin{matrix}x+4\geqslant 0 & & \\ 2x+4\geqslant 0 & & \end{matrix}\right.\Leftrightarrow x\geqslant -2$

Bất phương trình tương đương:$3^{\sqrt{x+4}}+2^{\sqrt{2x+4}}> 13$

Xét hàm số $f[x]=3^{\sqrt{x+4}}+2^{\sqrt{2x+4}}-13$ với $x\geqslant -2$

Ta có: $f'[x]=\frac{1}{2\sqrt{x+4}}.3^{\sqrt{x+4}}In3+\frac{2}{\sqrt{x+2}}.4^{\sqrt{x+2}}In4 > 0, \forall x\geqslant -2$

Suy ra: $f[x]$ đồng biến trên $[-2;+\infty]$

+ Nếu $x > 0$ thì $f[x] > f[0]\Leftrightarrow3^{\sqrt{x+4}}+4^{\sqrt{x+2}} > 0$ nên $x > 0$ là nghiệm

+ Nếu $-2\leqslant x\leqslant 0$ thì $f[x]\leqslant f[0] \Leftrightarrow3^{\sqrt{x+4}}+4^{\sqrt{x+2}}\leqslant 0 nên -2\leq x\leqslant 0$không có nghiệm

Vậy x > 0 là nghiệm của bất phương trình.

6. Bài tập áp dụng tổng hợp

Để luyện tập thành thạo tất cả các phương pháp giải bất phương trình mũ, VUIHOC đã biên soạn gửi tặng các em bộ tài liệu luyện tập giải bất phương trình mũ siêu chi tiết và đầy đủ các phương pháp trên. Nhớ tải về để làm thử nhé!

Tải xuống bộ bài tập tổng hợp giải bất phương trình mũ

Trên đây là 4 cách giải bất phương trình mũ rất dễ áp dụng, nhanh và chính xác giúp các bạn giải quyết toàn bộ các bài tập về phương trình bất phương trình mũliên quan. Bạn nhớ lưu lại ngay để nhớ cách áp dụng khi làm bài tập nhé. Chúc bạn học tốt!

Khoá học liên quan

Gói

Toán 12 | Ôn thi THPTQG 2021 môn Toán

180 clip bài giảng theo từng chủ đề, hơn 6700 bài tậpbám sát chương trình ôn thi THPT QG, 20 đề ôn tập có video chữa cụ thể, 30 đề tự luyện, cùng với khóa livestream. Giúp học sinh nắm vững kiến thức, tâm thế vững vàng trước kì thi.

1.500.000
Chỉ còn 900.000
Chỉ còn 2 ngày
Đăng ký
Bài viết liên quan
Làm chủ kiến thức về hàm logarit
3 bước tìm nhanh tập xác định của hàm số mũ không nguyên
Tổng ôn từ A đến Z về hàm số mũ
Trao lời yêu thương - Nhận ngàn phần thưởng cùng VUIHOC
| đánh giá

Video liên quan

Chủ Đề