Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Trang chủ Diễn đàn > TOÁN HỌC > LỚP 11 > Chủ đề 4. GIỚI HẠN >

Với Cách chứng minh phương trình có nghiệm cực hay, chi tiết Toán lớp 11 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập chứng minh phương trình có nghiệm từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

+) Áp dụng định lý: Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) < 0, thì phương trình f(x) = 0 có ít nhất 1 nghiệm nằm trong khoảng (a; b).

+) Các bước làm bài chứng minh phương trình có nghiệm.

- Bước 1: Biến đổi phương trình cần chứng minh về dạng f(x) = 0.

- Bước 2: Tìm 2 số a và b (a < b) sao cho f(a) . f(b) < 0

- Bước 3: Chứng minh hàm số y = f(x) liên tục trên đoạn [a; b].

 Từ đó suy ra phương trình f(x) = 0 có ít nhất một nghiệm thuộc (a; b).

 Lưu ý: Các bước trên có thể thay đổi thứ tự.

+) Một số chú ý:

- Nếu f(a).f(b) ≤ 0 thì phương trình có ít nhất 1 nghiệm thuộc [a; b].

- Nếu hàm số f(x) liên tục trên [a; + ∞) và có f(a) .

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
< 0 thì phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc (a; +∞).

- Nếu hàm số f(x) liên tục trên (-∞; a] và có f(a) .

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
< 0 thì phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc (-∞; a).

Ví dụ 1: Chứng minh rằng phương trình x3 + x - 1 = 0 có nghiệm.

Hướng dẫn giải:

Đặt f(x) = x3 + x - 1

Hàm f(x) là hàm đa thức nên f(x) liên tục trên R (định lý cơ bản về tính liên tục)

Suy ra hàm f(x) liên tục trên đoạn [0; 1] (vì [0; 1] ⊂R) (1)

Ta có: f(0) = 03 + 0 – 1 = - 1 ; f(1) = 13 + 1 – 1 = 1

⇒ f(0) . f(1) = - 1. 1 = - 1 < 0 (2)

Từ (1) và (2) suy ra f(x) = 0 có ít nhất 1 nghiệm thuộc (0; 1) (tính chất hàm số liên tục).

Vậy phương trình x3 + x - 1 = 0 có nghiệm (đpcm).

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Ví dụ 2: Chứng minh 4x4 + 2x2 - x - 3 = 0 có ít nhất hai nghiệm thuộc khoảng (-1; 1).

Hướng dẫn giải:

+ Đặt f(x) = 4x4 + 2x2 - x - 3

Vì f(x) là hàm đa thức nên f(x) liên tục trên R.

Suy ra f(x) liên tục trên các đoạn [-1 ; 0] và [0; 1].

+ Ta có: f(-1) = 4.(-1)4 + 2.(-1)2 - (-1) - 3 = 4

f(0) = 4.0 + 2.0 - 0 - 3 = -3

f(1) = 4.14 + 2.12 - 1 - 3 = 2

+ Vì f(-1).f(0) = 4.(-3) = -12 < 0 nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc (-1; 0)

Vì f(0) . f(1) = -3 . 2 = -6 < 0 nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc (0; 1)

Mà hai khoảng (-1; 0) và (0; 1) không giao nhau. Từ đó suy ra phương trình đã cho có ít nhất hai nghiệm thuộc (-1; 1). (đpcm)

Ví dụ 3: Chứng minh rằng phương trình x5 - 5x3 + 4x - 1 = 0 có đúng 5 nghiệm.

Hướng dẫn giải:

Đặt f(x) = x5 - 5x3 + 4x - 1 thì f(x) liên tục trên R (vì f(x) là hàm đa thức).

Ta có:

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc
Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng
Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng
Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng
Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Vì f(1) . f(3) = -1 . 119 = -119 < 0 nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (1; 3).

Do các khoảng

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
không giao nhau nên phương trình f(x) = 0 có ít nhất 5 nghiệm.

Mà phương trình f(x) = 0 có bậc là 5, nên nó có không quá 5 nghiệm

Vậy phương trình f(x) = 0 có đúng 5 nghiệm (đpcm).

Ví dụ 4: Chứng minh rằng phương trình (m2 - m + 3)x2n - 2x - 4 = 0 với n ∈ N* luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m.

Hướng dẫn giải:

Đặt f(x) = (m2 - m + 3)x2n - 2x - 4

Ta có:

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Mặt khác hàm số f(x) xác định là liên tục trên R nên hàm số liên tục trên đoạn [-2; 0]

Do đó phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (-2; 0).

Vậy phương trình đã cho luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m.

Ví dụ 5: Chứng minh rằng với mọi a, b, c phương trình x3 + ax2 + bx + c = 0 luôn có nghiệm.

Hướng dẫn giải:

Đặt f(x) = x3 + ax2 + bx + c thì f(x) liên tục trên R (vì f(x) là hàm đa thức).

Ta có:

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
⇒∃ x1 > 0 để f(x1) > 0

Tương tự:

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương
⇒∃ x2 < 0 để f(x2) < 0

Như vậy có x1 ; x2 để f(x1) . f(x2) < 0 suy ra phương trình có nghiệm x ∈ (x1; x2)

Vậy phương trình đã cho luôn có nghiệm với mọi a, b, c.

VnHocTap.com giới thiệu đến các em học sinh lớp 11 bài viết Chứng minh phương trình có nghiệm, nhằm giúp các em học tốt chương trình Toán 11.

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Sử dụng tính liên tục chứng minh phương trình có nghiệm dương

Nội dung bài viết Chứng minh phương trình có nghiệm:
Để chứng minh phương trình f(x) = 0 có ít nhất một nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và có hai số a, b + D sao cho f(a). f(6) < 0. Để chứng minh phương trình f(x) = 0 có k nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và tồn tại k khoảng rời nhau (a; 0, -1),(i = 1, 2, …, k) nằm trong D sao cho f(ai). f (ai + 1) < 0. Ví dụ 1. Chứng minh rằng phương trình 274 – 2×3 – 3 = 0 có ít nhất một nghiệm thuộc khoảng (-1; 0). Đặt f(z) = 2a4 – 223 – 3. Vì f(x) là hàm đa thức xác định trên IR nên f(x) liên tục trên IR = f(x) liên tục trên (-1; 0). Ta có: f(0) = -3; f (-1) = 1 = f(-1) f(0) < 0. f(x) = 0 có ít nhất một nghiệm thuộc khoảng (-1; 0) (đpcm). Ví dụ 2. Chứng minh rằng phương trình 60 + 3×2 – 31c + 10 = 0 có đúng 3 nghiệm phân biệt. Đặt f(x) = 6×3 + 3×2 – 31x + 10. TXD: D = IR = f(x) liên tục trên IR = f(x) liên tục trên (-3; 2). f(z) = 0 có nghiệm thuộc (0; 1). f(1).f(2) < 0 = f(x) = 0 có nghiệm thuộc (1; 2). f(2) = 8 Mặt khác vì f(x) là một đa thức bậc ba nên phương trình f(x) = 0 chỉ có tối đa ba nghiệm. Vậy phương trình f(x) = 0 có đúng 3 nghiệm phân biệt (đpcm). Ví dụ 3. Chứng minh rằng phương trình x – 1 + sin c = 0 có nghiệm. Xét hàm số f(x) = 0 – 1 + sinx liên tục trên (f(0) = -1. m = f(0).6 < 0. Suy ra phương trình f(z) = 0 có nghiệm do € (0; 4). Vậy phương trình 2 – 1+ sinx = 0 có nghiệm (đpcm). Ví dụ 4. Chứng minh rằng phương trình (m2 + m + 4) = 2017 – 2x + 1 = 0 luôn có ít nhất một nghiệm âm với mọi giá trị của tham số m. Xét hàm số f(z) = (m2 + m + 4) = 2017 – 2x + 1 liên tục trên (-1; 0). Vậy f(x) = 0 luôn có ít nhất một nghiệm âm với mọi giá trị của tham số m (đpcm).