Bài tập về tập hợp chứa tham số năm 2024

Tài liệu gồm 202 trang, bao gồm tóm tắt lý thuyết, phân dạng và bài tập chuyên đề mệnh đề và tập hợp trong chương trình môn Toán lớp 10 GDPT 2018 (chương trình SGK mới).

CHUYÊN ĐỀ 1. MỆNH ĐỀ – TẬP HỢP. BÀI 1. MỆNH ĐỀ TOÁN HỌC. + Dạng 1. Nhận biết mệnh đề, mệnh đề toán học, mệnh đề chứa biến. + Dạng 2. Xét tính đúng, sai của mệnh đề. + Dạng 3. Phủ định một mệnh đề. + Dạng 4. Mệnh đề kéo theo, mệnh đề đảo, mệnh đề tương đương. + Dạng 5. Mệnh đề chứa biến, mệnh đề chứa kí hiệu ∀, ∃. BÀI TẬP TRẮC NGHIỆM MỆNH ĐỀ. BÀI 2. TẬP HỢP. + Dạng 1. Phần tử, tập hợp, xác định tập hợp. + Dạng 2. Tập hợp con, tập hợp bằng nhau. BÀI 3. CÁC PHÉP TOÁN TẬP HỢP. + Dạng 1. Tìm giao của các tập hợp. + Dạng 2. Tìm hợp của các tập hợp. + Dạng 3. Tìm hiệu, phần bù của các tập hợp. + Dạng 4. Tổng hợp giao, hợp, hiệu và phần bù. + Dạng 5. Bài toán thực tế liên quan. BÀI 4. CÁC TẬP HỢP SỐ. + Dạng 1. Cho tập hợp viết dạng tính chất đặc trưng, viết tập đã cho dưới dạng khoảng / đoạn / nửa khoảng (hoặc ngược lại). + Dạng 2. Tìm giao, hợp, hiệu của hai tập hợp A, B, CRA và biểu diễn trên trục số (A, B cho dưới dạng khoảng / đoạn / nửa khoảng; dạng tính chất đặc trưng). + Dạng 3. Thực hiện hỗn hợp các phép toán giao, hợp, hiệu với nhiều tập hợp. + Dạng 4. Liệt kê các số tự nhiên (số nguyên) thuộc tập hợp A ∩ B của hai tập hợp A, B cho trước. + Dạng 5. Cho tập hợp (dạng khoảng / đoạn / nửa khoảng) đầu mút có chứa tham số m. Tìm m thỏa điều kiện cho trước. BÀI TẬP TRẮC NGHIỆM TẬP HỢP VÀ CÁC PHÉP TOÁN. BÀI TẬP ÔN TẬP CHƯƠNG 1.

File WORD (dành cho quý thầy, cô): TẢI XUỐNG

  • Mệnh Đề Và Tập Hợp

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

Thầy cô giáo và các em học sinh có nhu cầu tải các tài liệu dưới dạng định dạng word có thể liên hệ đăng kí thành viên Vip của Website: tailieumontoan.com với giá 500 nghìn thời hạn tải trong vòng 6 tháng hoặc 800 nghìn trong thời hạn tải 1 năm. Chi tiết các thức thực hiện liên hệ qua số điện thoại (zalo ): 0393.732.038

Điện thoại: 039.373.2038 (zalo web cũng số này, các bạn có thể kết bạn, mình sẽ giúp đỡ)

Kênh Youtube: https://bitly.com.vn/7tq8dm

Email: [email protected]

Group Tài liệu toán đặc sắc: https://bit.ly/2MtVGKW

Page Tài liệu toán học: https://bit.ly/2VbEOwC

Website: http://tailieumontoan.com

Muốn làm tốt bài tập về các phép toán tập hợp thì nhất định các em phải nắm chắc lý thuyết, luyện tập thêm nhiều dạng bài khác nhau. Bài viết dưới đây sẽ cung cấp đầy đủ kiến thức về các phép toán trên tập hợp, các em cùng tham khảo nhé!

1. Lý thuyết các phép toán tập hợp

1.1. Phép hợp

Hợp của hai tập hợp A và B

Ký hiệu là A∪B, là tập hợp bao gồm tất cả các phần tử thuộc A hoặc thuộc B.

A∩B⇔{x∣ x∈A và x∈B}

Ví dụ: Cho tập A={2;3;4},B={1;2} thì A∪B={1;2;3;4}

Bài tập về tập hợp chứa tham số năm 2024

1.2. Phép giao

Giao của hai tập hợp A, B

Kí hiệu: A∩B là tập hợp bao gồm tất cả các phần tử thuộc cả A và B.

A∪B ⇔ {x∣x∈A hoặc x∈B}

Nếu 2 tập hợp A, B không có phần tử chung

A∩B=∅ khi đó ta gọi A và B là 2 tập hợp rời nhau.

Ví dụ: Cho tập A={2;3;4},B={1;2} thi A∩B={1}

Bài tập về tập hợp chứa tham số năm 2024

1.3. Phép hiệu

Hiệu của tập hợp A, B là tập hợp tất cả các phần tử thuộc A nhưng lại không thuộc B.

Ký hiệu: A∖B

A∖B= x∣x∈A & x∉B

Ví dụ: Cho tập A = {2;3;4}, B = {1;2} ta có:

A∖B = {3;4}

B∖A = {1}

Bài tập về tập hợp chứa tham số năm 2024

1.4. Phần bù

Ta có A là tập con của E. Phần bù A trong X là X∖A, ký hiệu (CXA) là tập hợp cả các phần tử của E mà không là phần tử của A.

Ví dụ: Cho tập A = {2;3;4},B={1;2} ta có CAB=A∖B={3;4}

Bài tập về tập hợp chứa tham số năm 2024

Tham khảo ngay bộ tài liệu ôn tập kiến thức và tổng hợp phương pháp giải mọi dạng bài tập trong đề thi tốt nghiệp THPT

Bài tập về tập hợp chứa tham số năm 2024

2. Một số bài tập về các phép toán tập hợp và phương pháp giải

Phương pháp giải chung:

- Hợp của 2 tập hợp

x ∈ A ∪ B ⇔ x ∈ A hoặc x ∈ B

- Giao của 2 tập hợp

x ∈ A ∩ B ⇔ x ∈ A hoặc x ∈ B

- Hiệu của 2 tập hợp

x ∈ A \ B ⇔ x ∈ A hoặc x B

- Phần bù

Khi B ⊂ A thì A\B là phần bù của B trong A (kí hiệu là CAB)

Ví dụ 1: Cho A là tập hợp học sinh lớp 10 đang học ở trường và B là tập hợp các học sinh đang học Tiếng Anh của trường. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B;A ∩ B;A \ B;B \ A.

Giải:

1. A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường.

2. A ∩ B: tập hợp học sinh lớp 10 học môn Tiếng Anh của trường.

3. A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường.

4. B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường.

Ví dụ 2: Cho A={1,2,3,4,5,6,9}; B={1,2,4,6,8,9} và C={3,4,5,6,7}

  1. Tìm hai tập hợp (A \ B) ∪ (B \ A) và (A ∪ B) \\ (A ∩ B). Hai tập hợp nhận được có bằng nhau hay không?
  1. Hãy tìm A ∩ (B \ C) và (A ∩ B) \ C. Hai tập hợp nhận được có bằng nhau hay không?

Giải

  1. A \ B={3,5}; B \ A={8}

⇒ (A \ B) ∪ (B \ A)={3;5;8}

A ∪ B={1,2,3,4,5,6,8,9}

A ∩ B={1,2,4,6,9}

⇒ (A ∪ B) \\ (A ∩ B)= {3;5;8}

Do đó: (A \ B) ∪ (B \ A)=(A ∪ B) \\ (A ∩ B)

  1. B \ C = {1,2,8,9}

⇒ A ∩ (B \ C) = {1,2,9}.

A ∩ B={1,2,4,6,9}

⇒ (A ∩ B) \ C = {1,2,9}.

Do đó: A ∩ (B \ C) =(A ∩ B) \ C

Ví dụ 3: Viết mỗi tập hợp sau bằng cách chỉ ra tính chất đặc trưng cho các phần tử của nó:

  1. A = {2; 3; 5; 7}
  1. B = {-3; -2; -1; 0; 1; 2; 3}
  1. C = {-5; 0; 5; 10; 15}.

Giải:

  1. A là tập hợp các số nguyên tố nhỏ hơn 10.
  1. B là tập hợp các số nguyên có giá trị tuyệt đối không vượt quá 3.

B={x ∈ Z||x| ≤ 3}.

  1. C là tập hợp các số nguyên n chia hết cho 5, không nhỏ hơn -5 và không lớn hơn 15.

C={n ∈ Z|-5 ≤ n ≤ 15; n ⋮ 5}

3. 10 câu hỏi trắc nghiệm các phép toán tập hợp có đáp án

Câu 1: Cho các tập hợp A = {m ∈ N | m là ước của 16}; B = {n ∈ N | n là ước của 24}.

Tập hợp A ∩ B là:

  1. {1; 2; 4; 8}
  1. {±1; ±2; ±4; ±8}
  1. {1; 2; 4; 8; 16}

Giải:

Ta có A = {m ∈ N | m là ước của 16} = {1; 2; 4; 8; 16}.

B = {n ∈ N | n là ước của 24 = {1; 2; 3; 4; 6; 8; 12; 24}.

⇒ A ∩ B = {1; 2; 4; 8}.

Chú ý: A ∩ B chính là tập hợp các ước số tự nhiên của 8 = ƯCLN(16;24).

Chọn đáp án B

Câu 2: Xác định tập hợp X thỏa mãn hai điều kiện:

X ∪ {1; 2; 3} = {1; 2; 3; 4} và X ∩ {1; 2; 3; a} = {2; 3}.

  1. X = {2; 3}
  1. X = {1; 2; 3; 4}
  1. X = {2; 3; 4}
  1. X = {2; 3; 4; a}

Giải:

Chọn đáp án C

Vì X ∪ {1; 2; 3} = {1; 2; 3; 4} nên 4 ∈ X và tập X ⊂ {1; 2; 3; 4}. Vì X ∩ {1; 2; 3; a} = 2; 3} nên 2; 3 ∈ X và 1 ∉ X, a ∉ X.

Tóm lại, ta có X = {2; 3; 4}.

Câu 3: Cho A = {a, b, c, d, e} và B = {c, d, e, k}. Tập hợp A ∩ B là:

  1. {a, b}
  1. {c, d, e}
  1. {a, b, c, d, e, k}
  1. {a, b, k}

Giải:

Chọn đáp án B

A= {a; b; c; d;e} và B= {c; d; e; k}

Tập hợp A ∩ B= {c; d;e}

Đăng ký ngay để được các thầy cô tư vấn và xây dựng lộ trình ôn thi THPT sớm ngay từ bây giờ

Bài tập về tập hợp chứa tham số năm 2024

Câu 4: Cho hai tập hợp M = {1; 3; 6; 8} và N = {3; 6; 7; 9}. Tập hợp M ∪ N là:

  1. {1; 8}
  1. {7;9}
  1. {1;7;8;9}
  1. {1; 3;6;7;8;9}

Giải:

Chọn đáp án D

Hai tập hợp M= {1; 3;6;7;8} và N = {3;6;7;9}

Tập hợp M ∪ N= {1; 3;6;7;8;9}

Câu 5: Cho hai tập hợp A = {2; 4; 5; 8} và B = {1; 2; 3; 4}.

Tập hợp A\B bằng tập hợp nào sau đây?

  1. {2;4}
  1. {5;8}
  1. {5;8;1;3}

Giải:

Chọn đáp án C

Hai tập hợp A= {2;4;5;8} và B= {1;2;3;4}

Tập hợp A\B= {5;8}

Câu 6: Cho các tập hợp A = {1; 2; 3; 4; 5}, B = {3; 4; 5; 6; 7}. Tập hợp (A \ B) ∪ (B \ A) bằng:

  1. {1;2}
  1. {6;7}
  1. {1;2;6;7}

Giải:

Chọn đáp án D

Ta có A\B = {1;2}; B\A = {6;7}

(A\B) ∪ (B\A) = {1;2;6;7}

Câu 7: Cho hai tập hợp A, B thỏa mãn A ⊂ B.

Trong các mệnh đề sau, mệnh đề nào sai?

  1. A ∩ B = A
  1. A ∪ B= B
  1. A\ B=
  1. B\ A= B

Giải:

Chọn đáp án D

Nếu A B khí đó

A B = A

A ∪ B= B

A\ B =

Câu 8: Cho các tập hợp A = {2m - 3 | m ∈ Z} , B = {5n | n ∈ Z}. Khi đó A ∩ B là:

  1. {5(2k-1)| k ∈ Z}
  1. {10k| k ∈ Z}
  1. {3(2k-1) | k ∈ Z}
  1. {3k-3 | k ∈ Z}

Giải:

Các phần tử của A, B thuộc A ∩ B

Khi các giá trị m, n ∈ thỏa mãn

Vì m, n ∈ nên suy ra ∈

Hay

Từ đó suy ra A ∩ B =

Câu 9: Gọi T là tập hợp các học sinh của lớp 10A; N là tập hợp các học sinh nam và G là tập hợp các học sinh nữ của lớp 10A. Xét các mệnh đề sau:

(I) N ∪ G = T

(II) N ∪ T = G

(III) N ∩ G = ∅

(IV) T ∩ G = N

(V) T \ N = G

(VI) N \ G = N

Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?

  1. 2
  1. 3
  1. 4
  1. 5

Giải:

Chọn đáp án C

Trong các mệnh đề trên, có 4 mệnh đề đúng là (I), (III), (V), (VI).

Chú ý: Vì N ⊂ T, G ⊂ T nên N ∪ T = T, T ∩ G = G.

Câu 10: Cho hai đa thức P(x) và Q(x). Xét các tập hợp sau:

  1. {x ∈ R: P(x)=0}
  1. {x ∈ R: Q(x)=0}
  1. {x ∈ R: \=0}

Trong các mệnh đề sau, mệnh đề nào đúng?

  1. C= A ∩ B
  1. C= A ∪ B
  1. C= A\ B
  1. C= B\ A

Giải:

Chọn đáp án C

PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:

⭐ Xây dựng lộ trình học từ mất gốc đến 27+

⭐ Chọn thầy cô, lớp, môn học theo sở thích

⭐ Tương tác trực tiếp hai chiều cùng thầy cô

⭐ Học đi học lại đến khi nào hiểu bài thì thôi

⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề

⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập

Đăng ký học thử miễn phí ngay!!

Bài tập về tập hợp chứa tham số năm 2024

Hy vọng qua bài viết này các em đã nắm được toàn bộ kiến thức về lý thuyết cũng như bài tập vận dụng về các phép toán tập hợp để đạt kết quả cao nhất khi làm bài. Để có thêm nhiều kiến thức hay thì em có thể truy cập ngay Vuihoc.vn để đăng ký tài khoản hoặc liên hệ trung tâm hỗ trợ để có được kiến thức tốt nhất chuẩn bị cho kỳ thi đại học sắp tới nhé!